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Reverse mathematics is a subfield of mathematical logic devoted to characterising the strength
of mathematical theorems from areas such as real and complex analysis, countable algebra, count-
able infinitary combinatorics, and the topology of complete separable metric spaces. The strength
of a theorem ϕ is determined by proving, over a weak base theory, its equivalence to a known sub-
system S of second order arithmetic, thus placing it in a well-studied hierarchy of such systems.
The standard base theory for reverse mathematics is RCA0, whose axioms consist of the axioms
of PA−, plus induction for Σ0

1 formulas, and the recursive (∆0
1) comprehension scheme. A typical

equivalence of the sort proved in reverse mathematics is that between the Heine–Borel covering
theorem and WKL0. The Heine–Borel covering theorem (HB) states that every covering of the
closed unit interval [0, 1] by a sequence of open intervals has a finite subcovering, while the axioms
of WKL0 consist of those of RCA0 plus Weak König’s Lemma: the statement that every infinite bi-
nary tree has an infinite path through it. A standard proof of HB can be formalized within WKL0.
Moreover, by adding HB to the axioms of the base theory RCA0, one can then “reverse” this result
and prove Weak König’s Lemma. The Heine–Borel covering theorem is therefore equivalent to
WKL0, provably in RCA0.

The focus of results in the early years of reverse mathematics was the so-called Big Five subsys-
tems RCA0, WKL0, ACA0, ATR0, and Π1

1−CA0, and many ordinary mathematical theorems were
found to be equivalent to them. The central results are collected in Stephen Simpson’s monograph
Subsystems of Second Order Arithmetic Simpson [2009]. Hirschfeldt’s book is a welcome addition
to Simpson’s classic reference work, providing a fresh and accessible look at a central aspect of
contemporary reverse mathematical research.

Tools and concepts from computability theory have been essential to reverse mathematics since
its inception, but in recent years they have taken centre stage due to their role in the study of
combinatorial principles related to Ramsey’s theorem, especially Ramsey’s theorem for pairs, RT2

2.
The present volume is an introduction to this ongoing research project. Based on Hirschfeldt’s
lecture notes, it would serve as an excellent textbook for graduate students who have completed
a course on computability theory. In turning his notes into a book Hirschfeldt has retained some
of the immediacy of the classroom, and the material is presented in an accessible and lively style.
An enjoyable aspect is the large number of questions and exercises, ranging from introductory
graduate-level problems to challenging open questions. One minor criticism is that the book has
no index. Given the variety of topics covered, and the connections between them, this would have
been an extremely useful addition for both students and researchers.

The first, introductory chapter motivates and explains the computability-theoretic and reverse
mathematical study of combinatorial problems. Chapter 2 then sets out the basic concepts and
techniques of computability theory and forcing. Since the book presumes some background in these
areas, chapter 2 is rather brisk, and not suitable as a text for a student learning this material for
the first time. The first half of the chapter is concerned with computability theory, and presents
the basic notions of computable and computably enumerable functions, relative computability, low
and high Turing degrees, and the arithmetical hierarchy. The second half of chapter 2 presents the
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essentials of forcing. While understanding it becomes essential in chapters 6 and 7, this section
could be skipped and returned to later.

The main focus of reverse mathematics has been on statements of the form ∀X[θ(X) →
∃Y ϕ(X,Y )] where both θ and ϕ are formulas of arithmetical complexity, i.e. containing only
first order quantifiers ranging over natural numbers. Given a statement P of this form, we say that
X is an instance of P if θ(X), and that Y is a solution to X if ϕ(X,Y ). Many ordinary math-
ematical statements can be formalized in this way, such as the statement that every continuous
function on [0, 1] is bounded, or that every countable commutative ring has a prime ideal. Here,
the instance X would be a countable commutative ring, and the solution Y a prime ideal in X.

Given this framing, a natural question concerns the relative complexity of X and Y . In par-
ticular, if X is a computable instance of P , what constraints are there on the complexity of Y ?
Chapter 3 addresses the case where P is Weak König’s Lemma, the statement that every infinite
subtree of 2<N has an infinite path through it. The answer turns out to be closely related to basis
theorems for Π0

1 classes. A Π0
1 class consists of the set of paths through a computable infinite

binary tree, and a basis theorem for Π0
1 classes states that, for some class C, every nonempty Π0

1

class contains a set X such that X ∈ C. The best known of these basis theorems is that of Jockusch
and Soare Jockusch and Soare [1972], which states that every nonempty Π0

1 class contains a set X
which is low, i.e. X ′ ≤T ∅′. From the low basis theorem it follows that every computable instance
of Weak König’s Lemma has a low solution, and moreover that there are models of WKL0 (the
system obtained by adding Weak König’s Lemma to RCA0) which consist only of low sets. This
means that WKL0 is strictly weaker than ACA0, since every model of ACA0 contains the halting
set, which is not low.

Chapter 4 is devoted to reverse mathematics. Hirschfeldt’s presentation is similar to that found
in other introductions to reverse mathematics, and the initial part of the chapter applies to the
reverse mathematics of any statement which can be formalized in second order arithmetic. In an
understandable choice given the book’s focus on combinatorial principles which typically only reach
the strength of ACA0, the chapter only examines in detail the systems RCA0, ACA0, and WKL0.
Readers interested in understanding the stronger systems also studied in reverse mathematics, such
as ATR0 and Π1

1−CA0, are advised to consult Simpson’s textbook Simpson [2009].
While the Big Five are neatly linearly ordered by proof theoretic strength, the world out-

side them—including many of the principles discussed in this book—appears much more chaotic.
Chapter 5, “In Defense of Disarray”, is a brief philosophical interlude in which Hirschfeldt pro-
fesses his preference for this state of affairs, while tempering it with an assertion that “one should
never mistake lack of obvious structure for actual lack of structure” (p. 70). He also presses the
point, discussed more extensively in the next chapter, that computability theory can give us a finer
grained sense of the relationships between mathematical principles than provable equivalence over
RCA0 alone does. The chapter closes with an extended meditation on the relevance of the study
of degrees, and in particular of degree classes, for understanding different classes of mathematical
objects and the principles that govern them. Although not explained at length, Hirschfeldt’s per-
spective on reverse mathematics and computability theory is an intriguing and sophisticated one.
Philosophers of mathematics, as well as logicians, might profit from engaging with it.

With the technical and methdological preliminaries out of the way, chapter 6 introduces the
central combinatorial idea of the book, namely Ramsey’s theorem, which for Hirschfeldt (p. 75)
“captures the idea that total disorder is impossible: a sufficiently large structure will always contain
a large ordered substructure”. Given X ⊆ N and n ∈ N, let [X]n denote the set of n-element subsets
of X. For k ∈ N, a k-coloring of [X]n is a function c : [X]n → k. We call H ⊆ X homogeneous
for c if there is an i < k such that for all x ∈ [H]n, c(x) = i. Ramsey’s theorem states that for
any k-coloring of [N]n, where n and k are positive integers, there exists an infinite set which is
homogeneous for that coloring.

By fixing n, k ≥ 1, we can obtain special cases of Ramsey’s theorem: RTn
k states that every

k-coloring of [N]n has an infinite set homogeneous for it. The following facts are given as an
exercise (6.2). For n ≥ 1 and k ≥ 2, RCA0 proves that: RT1

k; RTn+1
k → RTn

k ; and RTn
k → RTn

k+1.
Hirschfeldt then presents three proofs of Ramsey’s theorem and shows, step by step, how to arrive at
a uniform proof of RTn

k that can be carried out in ACA0 for any n, k ≥ 1. Jockusch Jockusch [1972]
proved the existence of a computable 2-coloring c of [N]3 such that any infinite set homogeneous
for c computes the Turing jump. As a corollary of this result, we also have a reversal: RT3

2 (and
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hence RTn
k for n ≥ 3 and k ≥ 2) is equivalent over RCA0 to ACA0.

As Hirschfeldt remarks, equivalences of principles P to ACA0 are often “coarse”. The comput-
ability-theoretic study of solutions to computable instances of P can reveal a finer structure than
reverse mathematics alone, by calculating bounds on their complexity in terms of the arithmetical
hierarchy. Jockusch’s result that RT3

2 has a computable instance whose solutions all compute the
jump can be relativized to show that for each n ≥ 3, there is a computable 2-coloring of [N]n such
that any infinite set homogeneous for c computes ∅(n−2). Moreover, for any n ≥ 2, there exists a
computable 2-coloring of [N]n with no Σ0

n-definable infinite homogeneous set. In other words, as
n increases, so does the complexity of solutions to computable instances of RTn

k , as measured in
terms of the arithmetical hierarchy.

The only principle left out of the reverse mathematical classification above is RT2
2, Ramsey’s

theorem for pairs. Specker Specker [1971] proved that there is a computable 2-coloring of [N]2

with no computable infinite homogeneous set. This means that RT2
2 does not hold in the ω-model

REC consisting of the computable sets, and since REC is a model of RCA0, RT2
2 is not provable in

RCA0. Jockusch Jockusch [1972] improved Specker’s result by showing that there is a computable
c : [N]2 → 2 with no Σ0

2-definable homogeneous set. Since there are models of WKL0 consisting
entirely of low sets, which are all Σ0

2, it follows that WKL0 6` RT2
2. Two natural questions are thus:

does RT2
2 imply ACA0, and if not, does it imply WKL0?

The first question was answered in the negative by Seetapun’s theorem in Seetapun and Slaman
[1995], while the second was solved by Liu Liu [2012], who proved that RT2

2 and WKL0 are incom-
parable, in the sense that neither implies the other over RCA0. A version of Liu’s proof appears
in the book as an appendix of some ten pages, giving readers an example of a combinatorially
complicated forcing argument in reverse mathematics. While it remains far from the easiest ex-
ample to follow, Hirschfeldt’s presentation of the result improves on the original paper, so as well
as exposing students to an important and exciting advance in the area, it also provides researchers
with an improved reference version of Liu’s proof.

An important advance in our understanding of RT2
2 was made by Cholak, Jockusch, and Slaman

Cholak et al. [2001], who split the theorem into a stable part and a cohesive part. We call a coloring
c : [N]2 → k stable if for all x, limyc(x, y) exists. SRT2

2 is the statement that every stable 2-coloring
of [N]2 has an infinite homogeneous set. We call a set C cohesive for a collection of sets R0, R1, . . .
if it is infinite and for all i, either C − Ri or C ∩ Ri is finite. COH is the statement that every
countable collection of sets has a cohesive set. Neither SRT2

2 and COH alone imply RT2
2 over RCA0

(or even WKL0), and moreover, neither implies the other. However, the conjunction SRT2
2 + COH

is equivalent over RCA0 to RT2
2. The colorings used in the proofs of the computability-theoretic

results above are often stable, and in fact any 2-coloring can be transformed into a stable coloring
using COH. Understanding RT2

2 in terms of a cohesive part and a stable part provides, amongst
other things, new routes to upper and lower bound theorems. It has also opened up new lines of
research: principles such as COH are now studied for their own sake, as well as to shed light on
existing subjects such as RT2

2. Both aspects are explored in the book, the former in several sections
of chapter 6, and the latter in chapter 9.

Chapter 7 is concerned with conservativity theorems, which play several important roles in the
investigation of subsystems of second order arithmetic. Given two theories S and T in languages LS

and LT , and a set of sentences Γ drawn from the language LS∩LT , we say that T is Γ-conservative
over S if for every ϕ ∈ Γ, if T ` ϕ then S ` ϕ. In the special case that Γ consists of all sentences
of LS , we say simply that T is conservative over S. Often, a conservativity theorem can help us
to determine a system’s consistency strength: if a theory T is Π0

1-conservative over S, then since
consistency statements are Π0

1, S and T are equiconsistent. In reverse mathematics, conservativity
theorems have another application: giving uniform proofs of non-implications between particular
principles and whole classes of statements. For instance, WKL0 is Π1

1 conservative over RCA0, so
no Π1

1 sentence implies Weak König’s Lemma over RCA0. Moreover, it allows us to understand the
relationship between systems of second order arithmetic and systems of first order arithmetic. For
example, RCA0 (and hence also WKL0) is a conservative extension of IΣ1.

The general strategy for proving that a theory T is Γ-conservative over a theory S is to show
that every countable model M of S can be expanded to a countable model N of T , while not
changing the truth values of any ϕ ∈ Γ. These model expansion arguments often use the method
of forcing developed in chapter 2. In reverse mathematics, T usually consists of S + P , where P
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is a sentence of the form ∀X[θ(X) → ∃Y ψ(X,Y )] with θ and ψ arithmetical. Starting with an
arbitrary countable model M of S, the standard approach is to use a forcing construction to add
a generic G to M such that M [G] |= S and M [G] satisfies an instance of P , while preserving Γ.
Iterating the construction and then taking the union produces a model N = M[G0][G1] . . . of T
such that for ϕ ∈ Γ, if M 6|= ϕ, then N 6|= ϕ.

To demonstrate this proof strategy, but before introducing the additional complication of a
forcing construction, Hirschfeldt presents two classic results: the conservativity of ACA0 over PA,
and of RCA0 over IΣ1. He then turns to the foundational result in this area: Harrington’s proof
that WKL0 is Π1

1 conservative over RCA0. The last part of chapter 7 proves, using Mathias forcing,
that the principle COH introduced in chapter 6 is conservative over RCA0 for all r-Π1

2 sentences:
those of the form ∀X[η(X) → ∃Y ρ(X,Y )] where η is arithmetic and ρ is Σ0

3. This result gives
a uniform proof that COH does not imply, over RCA0, any principle that can be expressed as an
r-Π1

2 sentence, including Weak König’s Lemma, RT2
2, and SRT2

2.
Given its importance in recent work in reverse mathematics, and the central role it plays in

this book, it is natural to ask whether RT2
2 corresponds to any particular subsystem of first order

arithmetic. It has been known since Hirst [1987] that RT2
2 implies BΣ0

2, and Chong, Slaman and
Yang Chong et al. [2017] showed that it does not imply IΣ0

2. Hirschfeldt asks (7.14) if RT2
2 Π1

1-
conservative over BΣ0

2. Patey and Yokoyama Patey and Yokoyama [2016] have recently shown that
WKL0 + RT2

2 is Π0
3-conservative over IΣ1. WKL0 + RT2

2 is thus Π0
3 conservative over BΣ0

2 as well.
It remains open whether this can be extended to full Π1

1-conservativity, but Patey and Yokoyama’s
result shows that RT2

2 has the same consistency strength as IΣ1, and moreover that adding it to
WKL0 does not result in an increase in consistency strength.

The results of the previous chapters are summarised in chapter 8 through a series of diagrams.
Then, in chapter 9, Hirschfeldt turns to the study of principles weaker than RT2

2, which is a major
focus of current research. These principles include some we have already seen such as COH, but also
many others including statements concerning linear and partial orders, combinatorial principles
such as further weakenings of Ramsey’s theorem, and statements from model theory such as the
Atomic Model Theorem. Finally, chapter 10 presents a selection of further topics, including two
sections on linear orders and one on systems stronger than ACA0. Although a short chapter on such
diverse topics can only provide a brief introduction to these other areas of reverse mathematics, it
is nonetheless a useful addition that could open up the breadth of the subject to a newcomer. All in
all, Hirschfeldt’s decision to keep the focus of the book squarely on Ramsey’s theorem and related
topics is entirely justified: the clear narrative and the thoroughness with which the central ideas
are treated makes Slicing the Truth an excellent book which this reviewer is happy to recommend.
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