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In ordinary mathematical practice, mathematicians prove theorems, reasoning from a fixed1

set of axioms to a logically derivable conclusion. The axioms in play are usually implicit: math-
ematicians are not generally in the habit of asserting at the beginning of their papers that they
assume ZFC. Given a particular proof, we might reasonably ask which axioms were employed
and make explicit the author’s assumptions.

Now that we have a set of axioms Γ which are sufficient to prove some theorem ϕ, we
could further inquire whether or not they are necessary to prove the theorem, or whether a
strictly weaker set of axioms would suffice. To a first approximation, reverse mathematics is the
programme of discovering precisely which axioms are both necessary and sufficient to prove any
given theorem of ordinary mathematics.

Expanding on this slightly, in reverse mathematics we calibrate the proof-theoretic strength of
theorems of ordinary mathematics by proving equivalences between those theorems and systems
of axioms in a hierarchy of known strength. This characterisation should provoke at least three
immediate questions. Which hierarchy of systems? How do these equivalence proofs work? And
just what is “ordinary mathematics”?

An immediate, if not entirely satisfactory answer to the last question is that one synonym
for the term is non-set-theoretic mathematics. In other words, we mean those parts of mathe-
matics which do not depend on abstract set-theoretical concepts. Typical examples of ordinary
mathematics include number theory, calculus, real analysis and computability theory.

The question of how these proofs work is most easily answered by taking a detour through
the systems used. To that end, we now turn to the usual way in which reverse mathematics is
developed, using second order arithmetic.

1 Second order arithmetic and its subsystems

Second order arithmetic is an extension of more familiar systems of arithmetic, such as Peano
arithmetic (henceforth PA) and its subsystems. Variables in first order arithmetic range over the
natural numbers. Second order arithmetic also has such variables, called number variables, but
in addition it has set variables which range over sets of numbers—in other words, over subsets of
the domain of the number variables. They are distinguished by using lowercase letters i, j, k, . . .
for number variables and uppercase letters X,Y, Z, . . . for set variables. Note that despite the
“second order” monicker this is a two-sorted first order language, not a second order one.2

The full system of second order arithmetic, also known as Z2, has three basic kinds of axiom.3

The first axiomatise the behaviour of the standard numerical vocabulary: the constants 0 and 1;
the addition and multiplication functions; and the less-than relation. The second is an induction

1For a particular proof.
2For more details on the language of second order arithmetic, see Appendix A.
3A full listing of these axioms is provided in Appendix B.
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axiom, formulated in terms of set membership rather than open formulae. Finally, there is a
comprehension scheme,

∃X∀n(n ∈ X ↔ ϕ(n))

for any formula ϕ in which X is not free. It is on restrictions of this comprehension scheme
that much of our attention now falls. The following three theories should give something of the
flavour of the constellation of different subsystems used in reverse mathematics.4

1.1 Recursive comprehension

Perhaps the most fundamental subsystem of Z2 is RCA0, named for the recursive comprehension
axiom. This restricts the comprehension scheme given above to ∆0

1 formulae, i.e. those which
define recursive sets.5 The 0 subscript in the name indicates, as it does for the other systems we
will consider, that RCA0 only has limited induction.

RCA0 is often the starting point for proofs in reverse mathematics. It’s strong enough to prove
the basic results required to get reversals off the ground, yet weak enough that many interesting
theorems are out of its reach.

1.2 Arithmetical comprehension

ACA0 is a much more powerful system than RCA0. It’s named for the arithmetical comprehension
axiom: the restriction of the full comprehension scheme to arithmetical formulae. An arithmetic
formula is one with no set quantifiers, i.e. Σ0

k for any k ∈ N, although it may have both set and
number parameters.

ACA0 is the second order counterpart of PA: any formula ϕ in the first order language of
arithmetic (the language in which PA is formulated) which is a theorem of ACA0 is also a theorem
of PA. In fact, an even stronger conservativity result holds: all models of PA can be identified
with the first order parts of models of ACA0, and conversely.

1.3 Weak König’s lemma

Unlike the previous two systems, WKL0 does not offer a distinctive comprehension principle as
its defining characteristic. Instead, its axioms are those of RCA0 plus the principle known as
weak König’s lemma.

Definition 1.1. (Weak König’s lemma, WKL) Every infinite subtree of the full binary tree has
an infinite path.

Perhaps surprisingly, this statement can actually be formalised in the language of second
order arithmetic, using only numbers and sets of numbers, although a few clever coding tricks
are required; see Appendix C for details.

4A subsystem of Z2 is a formal system S in the language of second order arithmetic where each axiom ϕ ∈ S
is a theorem of Z2. It should be obvious that this is the case for RCA0 and ACA0. Weak König’s lemma is a
theorem of ACA0, although WKL0 is a strictly weaker than ACA0 and strictly stronger than RCA0.

5A set A ⊆ N is recursive iff its characteristic function f : N→ {0, 1} is total and computable.
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2 Proving reversals

Now that we have some sense of the type of theorems we are interested in (those of ordinary
mathematics) and the hierarchy of systems which we shall use to investigate them (the subsystems
of Z2), we can examine the details of equivalence proofs in reverse mathematics.

The first step is to formalise our theorem—call it ϕ—in second order arithmetic. This tends to
involve fairly heavy coding, as without the usual panoply of set-theoretic machinery, everything
must be expressed in terms of numbers or sets of numbers (see the Appendix for some examples).

Suppose that ACA0 ` ϕ, giving us an upper bound to the strength of the theory required to
prove ϕ. ACA0 is at least as strong as ϕ; is it stronger, or is ϕ actually equivalent to ACA0?

To answer this question, we add ϕ as an axiom to the weak base system RCA0 and attempt
to derive the axioms of ACA0. This is the “reverse” part of reverse mathematics, where theorems
become axioms and axioms become theorems. The base system is needed because ϕ will not in
general allow us to develop enough of mathematics to carry out the proof.

The axioms of ACA0 are just those of RCA0 plus the arithmetical comprehension scheme, so
to prove that ϕ is equivalent to ACA0 over RCA0, we simply show that RCA0 + ϕ ` ψ, where ψ
is any instance of arithmetical comprehension.

Note that this is a theorem scheme, so the equivalence between the system ACA0 and the
statement ϕ cannot be formalised at the level of the object language. This does not always hold:
if ϕ were instead equivalent to WKL0 we could derive the following:

RCA0 `WKL↔ ϕ.

For a more familiar example of a reversal, we turn to the equivalence in set theory between the
Axiom of Choice and Zorn’s Lemma. Here our base system is ZF set theory, and the equivalence
is proved first by assuming AC and deriving Zorn’s Lemma, and then by assuming Zorn’s Lemma
and proving AC. This illustrates the importance of the base theory, as the equivalence actually
breaks down in weaker contexts such as that of second order arithmetic.6

3 The significance of reversals

Reverse mathematics has historically been motivated by foundational goals: to calibrate the
strength of classical mathematical theorems in terms of the axioms required to prove them.
The choice of second order arithmetic entails a restriction to essentially countable structures,
including those of countable algebra and combinatorics, and separable analysis and topology.

The major subsystems appear to correspond to various restricted foundations of mathemat-
ics. RCA0 is close (with some caveats; see Simpson [2009, remark I.8.9 on p.31]) to Bishop’s
constructivism. WKL0 can be seen as a partial realisation of Hilbert’s programme of finitistic
reductionism; this is explored further in Simpson [1988]. Finally, ACA0 corresponds to Weyl’s
predicativism, as developed by Feferman. Simpson [2009, §I.12] details several further correspon-
dences between systems of second order arithmetic and foundational programmes.

With this in mind, classifying the theorems of ordinary mathematics according to which
subsystem of second order arithmetic they are equivalent to becomes a powerful tool, since it
allows us to develop an understanding of the mathematical consequences of these foundational
programmes within a common framework.

Thus far we have discussed these systems largely in terms of axioms, and specifically set ex-
istence axioms such as comprehension schemes. An alternative way of formulating the strength

6See Dzhafarov and Mummert [2011].
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of a particular theorem or system is by appealing to principles of recursion theory. RCA0 cor-
responds to the existence of recursive sets and the closure under Turing reducibility and join;
WKL0 to the Jokusch–Soare low basic theorem; and ACA0 to closure under the Turing jump.

This suggests another way to conceive of reverse mathematics, currently being developed
by Shore [2010]. Instead of proof theoretic equivalences, we look at computable equivalences,
formalising the notion that “harder to prove” means “more difficult to compute”.

In a similar vein, Dean and Walsh [2011] offer an account of the significance of reversals
in terms of sameness of computational resource. They suggest that an equivalence between a
particular theorem and axiom system is both necessary and sufficient for sameness of computa-
tional resource. The latter is significant because it allows us to assess whether or not we ought
to accept some principle: if we believe that only computable sets exist, then we ought not to
accept the completeness theorem, since it reverses to WKL0. The significance of the former lies
in its ability to separate views based on the computational resources which they require: any
disagreement about the acceptance of principles should be mirrored by a difference in accepted
computational resource.

A The language of second order arithmetic

The language of second order arithmetic, L2, is a two-sorted first order language, with lowercase
number variables i, j, k, . . . ranging over natural numbers and uppercase set variables X,Y, Z, . . .
ranging over sets of numbers. Numerical terms consist of the constant symbols 0 and 1; number
variables; and t1 + t2 and t1 · t2 where t1 and t2 are numerical terms. Atomic formulae consist
of t1 = t2, t1 < t2 and t1 ∈ X where t1 and t2 are numerical terms and X is any set variable.
Formulae are built up in the usual way, with distinct number and set quantifiers.

So much for the syntax. As far as the semantics are concerned, a structure for L2 is one of
the form

M = 〈|M |,SM ,+M , ·M , 0M , 1M , <M 〉

where the number variables range over the domain |M | and set variables range over the set
SM ⊆ P(|M |). 0M and 1M are constant elements of |M |; +M and ·M are two-place functions on
|M |; and <M is a binary relation on |M |.

B The axioms of Z2

The axioms of Z2 are the universal closures of the following L2 formulae.

1. n+ 1 6= 0

2. m+ 1 = n+ 1→ m = n

3. m+ 0 = m

4. m+ (n+ 1) = (m+ n) + 1

5. m · 0 = 0

6. m · (n+ 1) = (m · n) +m

7. ¬m < 0
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8. m < n+ 1↔ (m < n ∨m = n)

9. (induction axiom)

(0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X))→ ∀n(n ∈ X)

10. (comprehension scheme)
∃X∀n(n ∈ X ↔ ϕ(n))

for all L2 formulae ϕ with X not free.

C Formalising weak König’s lemma

To demonstrate some of the coding machinery employed in developing mathematics within second
order arithmetic, let’s consider the statement defined above as weak König’s lemma, that every
subtree of the full binary tree has an infinite path. The full binary tree is 2<N, that is, the set of
all finite sequences of 0s and 1s. The first step is therefore to develop a way of expressing finite
sequences within L2. We define a pairing map

(i, j) = (i+ j)2 + i

where k2 = k · k. In other words, we can code pairs of numbers as single numbers. RCA0

allows us to prove the following theorems.

1. i ≤ (i, j) and j ≤ (i, j).

2. (i, j) = (i′, j′)→ (i = i′ ∧ j = j′).

A finite sequence of natural numbers can now be defined as a finite set X such that the
following conditions all hold:

1. ∀n(n ∈ X → ∃i, j(n = (i, j)));

2. ∀i, j, k(((i, j) ∈ X ∧ (i, k) ∈ X)→ j = k);

3. ∃l∀i(i < l↔ ∃j((i, j) ∈ X).

The number l in the third condition is the length of X. Finite sets such as X can of course
be coded as single numbers,7 so the set of all (codes of) finite sequences N<N is itself just a set
of numbers, and in fact it exists by Σ0

0 comprehension.
A tree is a set T ⊆ N<N which is closed under initial segments. An infinite path is a function

f : N→ N such that for all k ∈ N, the initial sequence

f [k] = 〈f(0), f(1), . . . , f(k − 1)〉

is in T . We can formalise functions as subsets of cartesian products, which are themselves
sets of (codes for) pairs as defined above. With this, we have all the ingredients necessary to
state weak König’s lemma formally in the language of second order arithmetic.

7See Simpson [2009, p.67] for details.

5



References

W. Dean and S. Walsh. Reversals and Sameness of Computational Resource. Talk at the Midwest
Phil Math Workshop, Notre Dame, 2011.

D. D. Dzhafarov and C. Mummert. On the strength of the finite intersection principle. ArXiv
e-prints, Sept. 2011.

R. A. Shore. Reverse Mathematics: The Playground of Logic. The Bulletin of Symbolic Logic,
Volume 16, Number 3, 2010.

S. G. Simpson. Partial realizations of Hilbert’s program. The Journal of Symbolic Logic, 53:
349–363, 1988.

S. G. Simpson. Subsystems of Second Order Arithmetic. Cambridge University Press, 2nd edition,
2009.

6


