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Abstract

Beginning with the work of Friedman [1975, 1976], the programme of reverse

mathematics has shown which axioms are required in order to prove many of the core

theorems of ordinary mathematics. In the course of doing so, a striking phenomenon

has emerged: almost every such theorem is either provable in a weak base theory

corresponding to computable mathematics, or equivalent over that base theory to one

of just four subsystems of second order arithmetic.

Although these results are clearly important, their philosophical ramifications are

unclear. The prevailing view in the reverse mathematics community is that they

reveal the strength of set existence principles required to prove given theorems of or-

dinary mathematics. Despite the prima facie plausibility of this view, the key concept

of a set existence principle is left undefined and unanalysed. Moreover, the position

depends heavily on the assumption that the coded representations of ordinary mathe-

matical objects in second order arithmetic are semantically faithful, and thus that the

formal counterparts of theorems of ordinary mathematics preserve the mathematical

content of those theorems. Finally, while close connections have been drawn between

results in reverse mathematics and important existing programmes in the founda-

tions of mathematics, these connections and the possible role of reverse mathematics

in answering foundational questions have not been the subject of a comprehensive

philosophical enquiry.

This thesis tackles all three issues. In chapter 2, I analyse the concept of a set

existence principle; argue for several constraints which any theory of this concept

should satisfy; and argue for a novel interpretation on which set existence principles

are understood as logically natural closure conditions on the powerset of the natu-

ral numbers. I then turn to representational issues: in chapter 3, I survey results

in higher order reverse mathematics that demonstrate that some common codings

are problematic, and draw some philosophical morals. Foundational questions are

explicitly addressed in chapter 4, in which I examine how reverse mathematics can

aid foundational inquiries, and the extent to which major subsystems of second order

arithmetic correspond to existing foundations for mathematics. Finally, in chapter 5, I

examine an alternative approach to reverse mathematics developed by Richard Shore.

Building on the understanding obtained in the preceding chapter, I show that Shore’s

framework is not an appropriate one in which to address foundational questions.
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1
Preliminaries

1.1 From axioms to theorems and back again

What axioms are truly necessary to prove particular theorems, or clusters of

theorems? To answer this question, Harvey Friedman [1975, 1976] initiated

a research programme called reverse mathematics. By formalising ordinary

mathematical concepts and statements in the language of second order arith-

metic, Friedman was able to show not only that many theorems of ordinary

mathematics could be proved in relatively weak subsystems of second order

arithmetic Z2, but that such theorems often turned out to be equivalent (mod-

ulo a weak base theory) to the axioms used to prove them. A classic example

is the least upper bound principle for the real numbers, which is equivalent not

only to numerous different formulations of the principle but also to the axiom

scheme of arithmetical comprehension.

The conception of the “ordinary mathematics” studied in reverse mathe-

matics is somewhat imprecisely drawn. Simpson [2009] distinguishes between

two parts of mathematics. On the one hand there is set-theoretic mathemat-

ics, that body of mathematical knowledge in which set-theoretic methods and

concepts are inextricably embedded. This includes the more abstract forms of

point-set topology and functional analysis, as well as set theory itself. On the

other hand there is the subject matter of reverse mathematics, what Simpson

calls ordinary or non-set-theoretic mathematics. These branches of mathemat-

ics are in some way independent of set-theoretic principles, and include real

and complex analysis, geometry, countable algebra, number theory and combi-

natorics.

To prove a result in reverse mathematics, we start with a weak base theory

B, and a formalisation τ of a given ordinary mathematical theorem. Assuming

that τ is not provable in B—typically shown using a model construction—we

use some stronger theory S (that extends B) to prove τ , often by a straight-
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1. Preliminaries

forward formalisation of the usual proof of that theorem. This gives us the

forward direction of the equivalence. We then add the theorem τ to the base

theory B and use the resulting theory B+τ to prove the axioms of the stronger

system S. This “reversal” demonstrates that S and τ are equivalent, modulo

the base theory B, and thus that the axioms of S are necessary in order to

prove τ .

The formal framework used in reverse mathematics is second order arith-

metic, a first-order logical system with two sorts of terms: natural number

terms and set terms, which in the intended interpretation range over the nat-

ural numbers N and their powerset P(N). It has a long history in work on

the foundations of mathematics; the most substantive classical developments

relevant to reverse mathematics are those of Hilbert and Bernays [1968, 1970],

and the system later appeared in works of the Polish school in connection with

infinitary logic.1

Although far more expressive than the familiar systems of first-order arith-

metic such as Peano arithmetic PA and its subsystems, second order arithmetic

is still restricted in its expressive power. It cannot, for example, quantify over

arbitrary sets of real numbers. This has some ramifications when we formalise

ordinary mathematical properties and statements within second order arith-

metic. The version of the least upper bound principle one can find in most

analysis textbooks states that every set of real numbers with an upper bound

has a least upper bound.2 In contrast, the version studied in reverse mathe-

matics states that every bounded sequence of real numbers has a least upper

bound, since every countable sequence of real numbers can be coded by a sin-

gle real, and individual real numbers (or at any rate, sets of natural numbers

representing them) can be quantified over in second order arithmetic—indeed,

it is for this reason that second order arithmetic has historically often been

referred to as the first-order theory of analysis.

It is a striking fact that almost all theorems of ordinary mathematics studied

thus far are provable in—and often equivalent to—just five basic systems of

second order arithmetic. These systems are collectively known as the Big Five:

RCA0, WKL0, ACA0, ATR0 and Π1
1-CA0. All of them include the basic number-

theoretic axioms of PA− (first-order Peano arithmetic PA, minus the induction

scheme) and the axiom scheme of Σ0
1 induction (with set parameters). Where

1For example in publications such as Grzegorczyk, Mostowski, and Ryll-Nardzewski [1958]

and Mostowski [1961], albeit typically in the guise of a second-order functional calculus,

which allows one to avoid some of the coding machinery that must be employed when only

quantification over sets is permitted.
2For example p. 4 of the classic Rudin [1976].
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1.1. From axioms to theorems and back again

they differ is in the different strengths of set existence principles that they

incorporate.

The most fundamental subsystem of second order arithmetic is RCA0. This

system is named for the recursive comprehension axiom, which restricts the

comprehension scheme to ∆0
1 sets, i.e. those which define recursive (com-

putable) sets. RCA0’s importance is due to the fact that it serves as the

standard base theory for reverse mathematics: the vast majority of equiva-

lences proved in the field are proved over RCA0, since although the theory is

rich enough to prove that many formalisations of ordinary mathematical no-

tions are well-defined, it is limited to the computable world, and cannot show

that non-computable objects exist. The degree to which ordinary mathemat-

ical practice implicitly appeals to such objects is one of the major themes of

reverse mathematics.

Somewhat stronger than RCA0 is the system WKL0, which consists of the

axioms of RCA0 plus the principle called weak König’s lemma. This is a restric-

tion of the classical König’s lemma to binary trees: every infinite tree T ⊆ 2<N

has an infinite path. WKL0 is just strong enough to prove theorems that rely

on some form of compactness, such as Gödel’s completeness theorem or the

Heine/Borel covering lemma.

The system ACA0 will be more familiar to logicians at large, since it is

essentially just the second order version of Peano arithmetic PA. Its axioms

consist of those of RCA0 plus a strengthened comprehension principle which

states that all arithmetically-definable sets exist. It proves every instance of

the first-order induction scheme, but no more: it is therefore conservative over

PA for sentences in the first-order language of arithmetic. Since it can define

the Turing jump operator, ACA0 is able to carry out many constructions that

are impossible in WKL0, and as such it can prove much stronger compact-

ness and completeness properties for the real numbers. This enables one to

develop most of the usual theory of real and complex analysis, including the

Bolzano/Weierstraß theorem.

ACA0 is also strong enough to prove arithmetical transfinite induction: ev-

ery countable wellordering admits proof by induction for arithmetical formulas.

However, it cannot prove the corresponding principle of arithmetical transfi-

nite recursion, that sets defined by iterating arithmetical comprehension along

countable wellorderings exist. This is the defining axiom of the much stronger

system ATR0, which is equivalent to a number of theorems concerning ordinals,

such as the statement CWO that any two countable wellorderings are compara-

ble. This is also the point in the reverse mathematics hierarchy where analysis

3



1. Preliminaries

gives way to descriptive set theory: ATR0 is equivalent to, amongst others, the

perfect set theorem.

All of the systems mentioned so far can be justified on predicative grounds,

but with Π1
1-CA0 we take the first steps into impredicativity. This system’s

defining axiom is the Π1
1 comprehension axiom, which asserts that every set

definable by a Π1
1 formula exists. It is equivalent to the existence of the hyper-

jump of every set, as well as other theorems from descriptive set theory such

as the Cantor/Bendixson theorem.

A note on terminology: I shall occasionally use the term “reversal” to mean

not just the implication from a theorem τ to a subsystem of second order

arithmetic S, but the equivalence S ↔ τ . This is in line with my goal to

explain the significance of these equivalences, for which the reversal is essential

and the distinguishing characteristic of reverse mathematics (hence, of course,

its name). It will always be clear from the context whether the equivalence

or just the implication τ ⇒ S is intended. The term “reversal” implies that

the implication S ⇒ τ is already known, so I will not characterise implications

τ ⇒ T where T is proof-theoretically weaker than τ as “reversals”; instead I

shall simply call them “implications”.

1.2 A typical reversal

The Bolzano/Weierstraß theorem is a fundamental result in real analysis which

states that every bounded sequence of real numbers contains a convergent sub-

sequence. We can express the theorem in second order arithmetic by defining

sequences of real numbers as follows.

Within RCA0, a sequence of real numbers is a function f : N×N→ Q such

that for each n ∈ N the function (f)n : N → Q defined by (f)n(k) = f((k, n))

is a real number. Such a sequence converges to x, x = limn xn, if

∀ε > 0 ∃n∀i(|x− xn+i| < ε).

A sequence is convergent if limn xn exists.

Theorem 1.2.1 (Friedman). The Bolzano/Weierstraß theorem is equivalent

over RCA0 to the arithmetical comprehension scheme.

Proof. The usual proof of the Bolzano/Weierstraß goes through in ACA0, giving

us the forward direction of the equivalence. To get the reversal we work in RCA0

and assume the Bolzano/Weierstraß theorem. Arithmetical comprehension is

equivalent to Σ0
1 comprehension, so it suffices to prove for some arbitrary Σ0

1

formula ϕ(n) that { n | ϕ(n) } exists.
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1.3. The landscape of reverse mathematics

Let ϕ(n) ≡ ∃kθ(k, n) be Σ0
1, i.e. θ is Σ0

0, and for each k ∈ N define

ck =
∑{

2−n : n < k ∧ (∃m < k)θ(m,n)
}
.

Then 〈ck : k ∈ N〉 is an increasing sequence of rational numbers which is

bounded above by k. This sequence exists by ∆0
1 comprehension. By the

Bolzano/Weierstraß theorem, c = limk ck exists. So we have

∀n(ϕ(n)↔ ∀k(|c− ck| < 2−n → (∃m < k)θ(m,n))).

This shows the equivalence of a Σ0
1 formula with a Π0

1 formula, so by ∆0
1

comprehension we have that

∃X∀n(n ∈ X ↔ ϕ(n)).

This proves Σ0
1 comprehension and hence arithmetical comprehension.

We shall see in more detail how this result relates to other, similar theorems

in real and functional analysis in §1.3. The reader interested in attaining a

broader understanding of the reverse mathematics programme before diving

into the philosophical fare on offer here would be well served by two recent

survey papers: Simpson [2010] and Shore [2010]. The latter is aimed more

at logicians and connects the field to other areas of mathematical logic. The

main textbook on reverse mathematics is Simpson’s book Subsystems of Second

Order Arithmetic [Simpson 2009], which we shall consult throughout the course

of this thesis.

1.3 The landscape of reverse mathematics

One of the most remarkable features about reverse mathematics is that al-

though theorems of a certain kind tend to huddle within the same equivalence

class—as the various limit principles listed below do—each one of the major

subsystems WKL0, ACA0, ATR0 and Π1
1-CA0 is equivalent to many theorems

from quite different branches of mathematics. Theorems of analysis, algebra

and combinatorics all turn out to be equivalent to one another when formalised

in RCA0. This speaks to the unity of mathematics, where an algebraic theorem

such as the existence of unique algebraic closures of every countable field is

equivalent to the existence of suprema for continuous real-valued functions, a

result that lies squarely in the purview of analysis.

More surprisingly, the vast majority of theorems studied to date are either

provable within the base theory RCA0, or are equivalent over RCA0 to one of

the other members of the Big Five. Since there are infinitely many distinct

5



1. Preliminaries

subsystems of second order arithmetic, one might expect ordinary mathemati-

cal theorems to be a little more spread out than this. This phenomenon, which

I will typically refer to as the Big Five phenomenon, will be central to many of

our later discussions.

Theorem 1.3.1 (Friedman/Simpson). The following are pairwise equivalent

over RCA0:

1. ACA0.

2. The least upper bound principle: Every bounded sequence of real numbers

has a least upper bound.

3. Every Cauchy sequence of real numbers is convergent.

4. The monotone convergence theorem: Every bounded increasing sequence

of real numbers is convergent.

5. The Bolzano/Weierstraß theorem: Every bounded sequence of real num-

bers has a convergent subsequence.

6. In any compact metric space, every sequence of points has a convergent

subsequence.

7. The Ascoli lemma: Every bounded equicontinuous sequence of real-valued

continuous functions on a bounded interval has a uniformly convergent

subsequence.

As mentioned above, one of the early results in reverse mathematics was the

equivalence between two basic completeness properties for the real numbers,

the least upper bound principle and the Bolzano/Weierstraß theorem, and the

axiom of arithmetical comprehension [Friedman 1975, p. 238]. Proofs of this

equivalence, and the rest of the results that make up theorem 1.3.1 above can

be found in §III.2 of Simpson [2009], who generalises the Bolzano/Weierstraß

theorem from the real numbers R to any complete separable metric space.

A further generalisation of this theorem, the Ascoli lemma, is an important

result in functional analysis. As Simpson shows, these theorems all occur at

exactly the same level in the reverse mathematics hierarchy, since they are all

equivalent to ACA0. This illustrates two important properties of the hierarchy.

The first is that generalisations of theorems often turn out to have precisely

the same proof-theoretic strength—or equivalently, theorems are often equiva-

lent to their special cases. To name but one example, the Heine/Borel covering

lemma for compact metric spaces is equivalent to the special case for the closed

6



1.3. The landscape of reverse mathematics

unit interval [0, 1]. An increase in generality can therefore be obtained without

a corresponding increase in the strength of the axioms required to prove the

theorem.

Secondly, these theorems are stable with respect to the reverse mathematics

hierarchy under some degree of generalisation or specialisation. This property

is known in the reverse mathematics literature as robustness, and many of the

key systems in reverse mathematics exhibit it by remaining stable under per-

turbations of their axioms. For example, ACA0 is a stable system: arithmetical

comprehension is equivalent not only to Σ0
1 comprehension, but also to similar

principles such as the existence of the Turing jump operator, and the existence

of ranges of one-to-one functions. All of the Big Five are robust, but thus far

few other systems are thought to have this property [Montalbán 2011, p. 432].3

We shall now survey a few important and illustrative equivalences between

members of the Big Five and theorems of ordinary mathematics. These the-

orems are drawn from many different areas of mathematics: as well as the

examples from analysis already discussed, there are theorems from algebra,

combinatorics, logic and descriptive set theory. A more complete list of im-

portant equivalences between ordinary mathematical theorems and members

of the Big Five can be found in Simpson [2010, pp. 116–9].

The following theorems are equivalent over RCA0 to WKL0.

1. The Heine/Borel covering theorem: Every covering of the closed unit

interval [0, 1] by a sequence of open intervals has a finite subcovering.

Like weak König’s lemma itself, this theorem from analysis is a compact-

ness result, stating that the closed unit interval is a compact space. As

mentioned above, this result generalises to compact metric spaces without

an increase in proof-theoretic strength [Simpson 2009, §IV.1].

2. Every continuous function on [0, 1] is bounded.

3. The separable Hahn/Banach theorem: If f is a bounded linear functional

on a subspace of a separable Banach space such that ‖f‖ ≤ 1, then f can

be extended to a functional f̃ on the entire space where ‖f̃‖ ≤ 1.

This is a striking example of how the restriction to countably repre-

sentable objects—in this case, separable Banach spaces—can reduce the

proof-theoretic strength of a theorem. The more usual general form of

the Hahn/Banach theorem is not provable in ZF set theory, although it

is a theorem of ZFC [Pincus 1974].

3Sanders [2012, §7] discusses robustness in reverse mathematics at some length.
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1. Preliminaries

4. Every countable commutative ring has a prime ideal.

5. Every countable field has a unique algebraic closure.

6. Every countable formally real field is orderable.

7. Every countable formally real field has a real closure.

8. Brouwer’s fixed point theorem: Every continuous function φ : [0, 1]n →
[0, 1]n has a fixed point.

9. Gödel’s completeness theorem: Every consistent countable set of sen-

tences in the predicate calculus has a countable model.

This result is a robust one: similar theorems such as the compactness

theorem for predicate calculus, and the compactness and completeness

theorems for propositional logic with countably many atomic formulas

are also equivalent to WKL0 [Simpson 2009, §IV.3]. The definition of

countable model used in these theorems incorporates the full elementary

diagram, since the usual approach via a recursive satisfaction predicate

is not available in RCA0.

We have already met a number of theorems from analysis which are equiv-

alent over RCA0 to ACA0 (theorem 1.3.1). The following theorems come from

algebra and combinatorics, and are also equivalent over RCA0 to arithmetical

comprehension.

1. Every countable commutative ring has a maximal ideal.

2. Every countable vector space over Q has a basis.

3. Every countable field of characteristic zero has a transcendence basis.

4. Every countable abelian group has a unique divisible closure.

5. König’s lemma: Every finitely branching infinite tree has a path.

König’s lemma provides an example where a generalisation does in fact

lead to an increase in proof-theoretic strength.

6. Ramsey’s theorem: Every colouring of [N]k (for any fixed k ≥ 3) has a

homogenous set.

Ramsey’s theorem for k = 2 is weaker than ACA0, and has sparked a large

body of research on combinatorial theorems lying outside the Big Five.

A good reference for the current state of the art is Hirschfeldt [2014],

chapters 6 and 9. I also discuss this theorem in §2.5.

8



1.3. The landscape of reverse mathematics

The following theorems are equivalent over RCA0 to ATR0.

1. Any two countable wellorderings are comparable.

2. Ulm’s theorem: Any two countable reduced abelian p-groups with the same

Ulm invariants are isomorphic.

3. The perfect set theorem: Every uncountable closed, or analytic, set has a

perfect subset.

4. Lusin’s separation theorem: Any two disjoint analytic sets can be sepa-

rated by a Borel set.

5. Every open game in NN is determined.

6. Every countable bipartite graph admits a König covering.

This theorem is from combinatorics, in particular the area known as

matching theory. The reverse direction of this equivalence was proved

by Aharoni, Magidor, and Shore [1992] and Simpson [1994] later proved

the forward direction. The history of this result is discussed at length by

Shore [2010, pp. 382–384].

The following theorems are equivalent over RCA0 to Π1
1-CA0.

1. Every countable abelian group is the direct sum of a divisible group and

a reduced group.

Many of the statements equivalent to Π1
1 comprehension are results in

descriptive set theory; this result is strikingly different, since it hails not

from an area with set-theoretic overtones, but from algebra.

2. The Cantor/Bendixson Theorem: Every closed subset of R (or of any

complete separable metric space) is the union of a countable set and a

perfect set.

This is a classic result in descriptive set theory. It is typically proved using

a tree representation for closed sets and a wellfoundedness argument. Its

equivalence to Π1
1 comprehension shows that this method of proof is in

some sense ineliminable.

3. Silver’s Theorem: For every Borel (or coanalytic, or Fσ) equivalence re-

lation with uncountably many equivalence classes, there exists a perfect

set of inequivalent elements.

9



1. Preliminaries

This list of theorems, while illustrating the breadth of reverse mathematical

results and the extent of the Big Five phenomenon, does not capture the full

richness of the hierarchy of systems studied in reverse mathematics. A fuller

picture will emerge in the course of this thesis, particularly in section 2.5 which

discusses some combinatorial principles between ACA0 and RCA0 that behave

in a more unruly manner than the Big Five.

1.4 Historical perspectives

As Sieg [1990, p. 872] points out, the importance of equivalences between

major theorems of analysis and its basic principles were already apparent to

Dedekind.4 The basic principle is question is Dedekind’s formulation of the

principle of continuity : Given any partition of the real numbers R into disjoint

sets X and Y such that for all x ∈ X and all y ∈ Y , x < y, there exists a

unique real number z such that z is either the greatest element of X or the

least element of Y .

The following excerpt from section VII of Stetigkeit und irrationale Zahlen

[Dedekind 1872] is quoted from the English translation [Dedekind 1901], and

appears on pages 24–7 of the reprinted version [Dedekind 1963]. While his

quoted remarks refer to “infinitesimal analysis”, Dedekind’s understanding of

continuity was very close to our modern one, and he uses the term merely to

refer to what we now call “real analysis”.

Here at the close we ought to explain the connection between the

preceding investigations [of the foundations of analysis] and certain

fundamental theorems of infinitesimal analysis.

. . .

One of the most important theorems may be stated in the following

manner: “If a magnitude x grows continually but not beyond all

limits it approaches a limiting value.”

. . .

This theorem is equivalent to the principle of continuity, i.e., it

loses its validity as soon as we assume a single real number not

to be contained in the domain R; or otherwise expressed: if this

theorem is correct, then [the principle of continuity is also] correct.

Another theorem of infinitesimal analysis, likewise equivalent to

this, which is still oftener employed, may be stated as follows: “If

4I wish to thank Professor Sieg for bringing this part of Dedekind’s work to my attention.
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in the variation of a magnitude x we can for every given positive

magnitude δ assign a corresponding position from and after which

x changes by less than δ then x approaches a limiting value.”

This converse of the easily demonstrated theorem that every vari-

able magnitude which approaches a limiting value finally changes by

less than any given positive magnitude can be derived as well from

the preceding theorem as directly from the principle of continuity.

. . .

These examples may suffice to bring out the connection between

the principle of continuity and infinitesimal analysis.

Left undiscussed by Sieg is the extent to which Dedekind’s investigation

of these equivalences has been vindicated by results in reverse mathematics.

The principle of continuity that Dedekind uses is not directly expressible in the

language of second order arithmetic, since it quantifies over arbitrary sets of

real numbers, but a similar completeness principle for the reals is so expressible,

namely the sequential least upper bound principle: Every bounded sequence of

real numbers has a least upper bound.

As we saw at the start of the previous section, the sequential least upper

bound principle is equivalent over RCA0 to a number of key theorems in analy-

sis. Amongst them was the statement that every bounded increasing sequence

of real numbers is convergent. This theorem should be familiar from Dedekind’s

quoted remarks: as he puts it, “If a magnitude x grows continually but not

beyond all limits it approaches a limiting value.” Dedekind also draws our

attention to the theorem “If in the variation of a magnitude x we can for ev-

ery given positive magnitude δ assign a corresponding position from and after

which x changes by less than δ then x approaches a limiting value.” This is just

the principle that every Cauchy sequence of real numbers is convergent, and

it is likewise equivalent to ACA0. These reverse mathematical results demon-

strate that the equivalences that concerned Dedekind are non-trivial, that is,

these theorems are equivalent to one another over the weak base theory RCA0,

but they are not themselves entailed by that theory.

The development of mathematics within second order arithmetic can also

be traced back to Dedekind, but for more substantive classical developments

we must look beyond the end of the nineteenth century and into the early

twentieth. A version of second order arithmetic, augmented with the full choice

scheme and thus strictly stronger than Z2 (albeit conservative for Π1
4 formulas),

was first introduced by David Hilbert and Paul Bernays in their Grundlagen

Der Mathematik [Hilbert and Bernays 1968, 1970]. Their formalisations of

11
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analysis can be found in Supplement IV of the Grundlagen.

Reverse mathematics as a coherent programme was begun by Friedman

[1975], who articulated the fundamental question that it investigates (although

the term “reverse mathematics” was not used to describe it until much later):

What are the proper axioms to use in carrying out proofs of partic-

ular theorems, or bodies of theorems, in mathematics? What are

those formal systems which isolate the essential principles needed

to prove them?

He then points to the phenomenon that now gives “reverse mathematics” its

name [Friedman 1975, p. 235]:

When the theorem is proved from the right axioms, the axioms can

be proved from the theorem.

When this theme applies, we have a unique formalization of the the-

orem, up to provable equivalence. [This] occurs surprisingly often,

but not always.

In this first paper, Friedman studied subsystems of second order arithmetic

with full induction. The restriction to Σ0
1 induction was introduced in Friedman

[1976], and is a feature of reverse mathematical research to the present day.

Contemporary reverse mathematical research is substantially shaped by two

traditions or schools of thought: the foundational tradition and the computa-

tional tradition. Although they have many figures and approaches in common,

these two traditions have distinctive motivations that colour the kind of re-

search being done under the rubric of “reverse mathematics”. The foundational

tradition follows the line of research laid down by Friedman and advanced by

Stephen Simpson and his students, namely studying the formalisation of theo-

rems and indeed whole subfields from “ordinary” or “core” mathematics within

second order arithmetic, and proving their equivalence to one or other of the

major subsystems thereof.

Research in the computational tradition treats reverse mathematics more

as a branch of applied computability theory. Techniques such as priority argu-

ments and forcing which have developed in the context of questions concerning

the structure of the Turing degrees, hyperarithmetical theory and so on, are

best applied not to proving equivalences but to constructing models that sat-

isfy one principle but not another—in other words, proving nonimplications.

For example, to show that WKL0 does not imply ACA0, one can use the low

basis theorem to construct a model M of WKL0 in which all sets are low, and

hence it does not contain the halting set 0′. Since 0′ can be proved to exist in

12



1.5. Second order arithmetic and its subsystems

ACA0, M is not a model of ACA0. It is this tradition in reverse mathematical

research that has led to focus on Ramsey’s theorem for pairs and the intricate

lattice of subsystems whose defining axioms stem from combinatorics, model

theory and computability theory, and which are collectively known as the re-

verse mathematics zoo [Dzhafarov 2015]. Many of the major figures in this

tradition are primarily recursion theorists, such as Denis Hirschfeldt, Richard

Shore and Theodore Slaman.

1.5 Second order arithmetic and its subsystems

This section and the ones that follow are intended to bring the reader up to

speed with the essentials of second order arithmetic, its major subsystems,

and the general technical underpinnings of reverse mathematics. It is far from

comprehensive and the reader interested in the mathematics for its own sake

is advised to consult Simpson [2009], the primary textbook of the field.

Second order arithmetic is an extension of more familiar systems of arith-

metic, such as first-order Peano arithmetic (PA) and its subsystems. In the

intended interpretation, variables in first order arithmetic range over the nat-

ural numbers. Second order arithmetic also has such variables, called number

variables, but in addition it has set variables which range over sets of numbers.

In this respect second order arithmetic is similar to second order Peano

arithmetic, PA2, which is a theory formulated in second-order logic. However,

the semantics of Z2 are importantly different from PA2. With the full second

order semantics, monadic second order predicates (akin to the set variables just

mentioned) in PA2 range over the entire powerset of the first order domain. As

shown by Dedekind’s categoricity theorem, this suffices to fix the interpretation

of PA2 to a single model (up to isomorphism), namely the standard model ω.

Second order arithmetic and its subsystems, on the other hand, are formulated

in first-order logic, and thus have many nonstandard models for both their

first-order and second-order parts.

In this thesis we shall follow the convention used by Simpson [2009] and use

the symbol N to refer to the “internal” natural numbers of theories in second-

order arithmetic. In a model-theoretic context N refers to the natural numbers

of the ambient model, in other words, whatever the range of the first-order

variables happens to be. The symbol ω is reserved for the “real” or “external”

natural numbers of a theory, which can be thought of as a set-theoretic con-

struction or simply the natural numbers of the metatheory, regardless of what

13
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that metatheory is.5

The language of second order arithmetic L2 is a two-sorted first order lan-

guage with number variables x1, x2, . . . and set variables X1, X2, . . . . Follow-

ing the usual practice we abbreviate number variables with lowercase letters

x, y, z,m, n, i, j, k and set variables with uppercase letters X,Y, Z. Other sym-

bols are also employed; whether a symbol represents a first order or second

order variable is always clear from context. The language of second order

arithmetic has the signature

(1.1) L2 = {0, 1,+,×, <,∈} .

These are the constant symbols 0 and 1, binary function symbols + and ×,

and binary relation symbols < and ∈. L2-structures are tuples of the form

(1.2) M = 〈|M |, S, 0M , 1M ,+M ,×M , <M 〉

where M is the domain of the first order variables and S ⊆ P(M) is the domain

of the second order variables. 0M and 1M are elements of M , +M and ×M are

binary operations on M , and <M is a binary relation on M . Set membership

is interpreted as follows: x ∈ Y iff xM ∈ YM .

The full theory of second order arithmetic or Z2 consists of three groups of

axioms: the number-theoretic axioms;6 the induction axiom; and the compre-

hension scheme. We define each in turn. All of the subsystems of second order

arithmetic considered in reverse mathematics are obtained by weakening this

full system of second order arithmetic.

n+ 1 6= 0(1.3)

m+ 1 = n+ 1→ m = n(1.4)

m+ 0 = m(1.5)

m+ (n+ 1) = (m+ n) + 1(1.6)

m · 0 = 0(1.7)

m · (n+ 1) = (m · n) +m(1.8)

¬m < 0(1.9)

m < n+ 1↔ (m < n ∨m = n)(1.10)

Then there is the standard second order induction axiom, allowing induction

over those sets the theory can prove exists.

(1.11) ∀X((0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X))→ ∀n(n ∈ X)).

5Although we shall also use it in a couple of other—hopefully not too confusing—ways.
6Simpson [2009] calls these the basic axioms.
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1.6. Recursive comprehension

Finally there is the full Z2 comprehension scheme, Π1
∞-CA, which asserts that

every set defined by an L2-formula ϕ exists.

(1.12) ∃X∀n(n ∈ X ↔ ϕ(n))

for all L2-formulae ϕ with X not free. Both number and set parameters from

the model are permitted in ϕ. This also holds for the restricted comprehension

schemes such as arithmetical comprehension.

Theorem 1.5.1. Z2 proves the full second order induction scheme: the uni-

versal closures of

(1.13) (ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1)))→ ∀n ϕ(n)

for all L2-formulae ϕ(n).

Proof. Let X be the set such that ϕ(n) holds for all n, where ϕ is an L2-formula.

X exists by the comprehension scheme 1.12 for ϕ, so we can just replace it by

its defining condition in the induction axiom 1.11.

Definition 1.5.2 (Σ0
n induction scheme). For each n ∈ ω, the Σ0

n induction

scheme, in symbols Σ0
n-IND, consists of the universal closures of all sentences

of the form

(ϕ(0) ∧ ∀m(ϕ(m)→ ϕ(m+ 1)))→ ∀m(ϕ(m))

where ϕ(m) is a Σ0
n formula (possibly with free variables) of the language of

second order arithmetic.

Where it simplifies presentation, the full induction scheme is abbreviated

Σ1
∞-IND. Systems with restricted induction axioms that cannot prove all in-

stances of Σ1
∞-IND are indicated by a subscripted ‘0’. These systems always

have a counterpart system which does prove the full induction scheme. So for

instance ACA0 is the system defined by the arithmetical comprehension ax-

iom and the Σ0
1 induction scheme, while ACA consists of ACA0 plus the full

induction scheme Σ1
∞-IND.

We now turn from full second order arithmetic Z2 to its subsystems. A

subsystem T of Z2 is a formal system in the language L2 such that each axiom

ϕ of T is a theorem of Z2. The following sections define the Big Five subsystems

of second order arithmetic and explain some of their key properties.

1.6 Recursive comprehension

Definition 1.6.1 (recursive comprehension and RCA0). The axiom scheme of

recursive comprehension consists of the universal closures of all sentences of
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the form

∀n(ϕ(n)↔ ψ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n))

where ϕ(n) is a Σ0
1 formula and ψ(n) is a Π0

1 formula, possibly with free vari-

ables, and X is not free in ϕ(n).

The axiom system RCA0 is a formal theory in the language of L2 consisting

of the number-theoretic axioms; the Σ0
1 induction axiom; and the recursive

comprehension scheme.

Given a subsystem T of Z2, we say that its first-order part is the set of

sentences ϕ in the first-order language of arithmetic L1 such that T ` ϕ. The

first-order part of RCA0 is just IΣ1, the subtheory of Peano arithmetic where

the induction scheme is restricted to Σ0
1 formulas. Because consistency state-

ments are Π0
1, this means that RCA0 is equiconsistent with IΣ1 and has the

same proof-theoretic ordinal, ωω. That this ordinal is wellfounded is equivalent

over RCA0 to the Hilbert basis theorem, as proved by Simpson [1988b]. This

result is discussed in more detail in §2.7.

Like the other subsystems of Z2 generally studied in reverse mathematics,

RCA0 is finitely axiomatisable. This follows from the representability in arith-

metic of universal Turing machines via Kleene’s T predicate. For consistency

with the reverse mathematics literature we follow Simpson [2009, p. 244]’s ter-

minology. Let

π(e,m1, . . . ,mi, X1, . . . , Xj)

be a Π0
1 formula with precisely the displayed free variables. π is a universal

lightface Π0
1 formula if for all Π0

1 formulas ϕ, RCA0 proves that

∀e∃e′∀m1, . . . ,mi∀X1, . . . , Xj(π(e′,m1, . . . ,mi, X1, . . . , Xj)

↔ ϕ(e,m1, . . . ,mi, X1, . . . , Xj)).

Such formulas can be constructed for any fixed i, j < ω, by a result analogous

to the enumeration theorem in recursion theory.

We can then give a finite axiomatisation of RCA0. Let π be a fixed universal

lightface Π0
1 formula. Then the axioms of RCA0 can be taken to consist of the

pairing axiom7

∀X∀Y ∃Z(Z = X ⊕ Y ),

recursive comprehension in the form

∀m(¬π(e0,m,X)↔ π(e1,m,X))→ ∃Y ∀m(m ∈ Y ↔ π(e1,m,X))

7See definition 5.1.1 of the recursive join operator X ⊕ Y .
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1.7. Weak König’s lemma

and Σ0
1 induction in the form

(¬π(e, 0, X) ∧ ∀m(¬π(e,m,X)→ ¬π(e,m+ 1, X)))→ ∀m¬π(e,m,X).

The need for the pairing axiom can be eliminated by simply allowing two set

parameters in the statement of the recursive comprehension axiom.

Before moving on to the next member of the Big Five, we shall briefly con-

sider a special class of L2-structures, ω-models. Their first-order part consists of

the standard natural numbers ω = { 0, 1, 2, . . . } while their second-order part

consists of a collection of sets S ⊆ P (ω). We shall often identify an ω-model

with its second-order part.

RCA0 has a minimum ω-model, namely

REC = {X ⊆ ω | X ≤T ∅ }

= {X ⊆ ω | X is recursive } .

The ω-models of RCA0 are precisely the Turing ideals: subsets of P (ω)

which are upwards closed under recursive joins and downwards closed under

Turing reducibility. ω-models of RCA0 play an important role in chapter 5.

1.7 Weak König’s lemma

Definition 1.7.1 (weak König’s lemma and WKL0). Weak König’s lemma is

the assertion that every infinite subtree of 2<N has an infinite path.

The axiom system WKL0 is a formal theory in the language of L2 consisting

of the axioms of RCA0 plus weak König’s lemma.

The first-order part of WKL0 is IΣ1, just like RCA0. In fact, WKL0 is Π1
1

conservative over RCA0; this fact is alleged by Simpson to have implications for

the foundational role of WKL0, which is discussed in §4.3. WKL0 is therefore

equiconsistent with RCA0, but the addition of weak König’s lemma allows it to

prove many more ordinary mathematical theorems than RCA0 can. There are

many interesting results concerning the ω-models of WKL0, not least that the

countable ω-models of WKL0 are precisely the Scott sets [Scott 1962].

1.8 Arithmetical comprehension

Definition 1.8.1 (arithmetical comprehension and ACA0). An L2-formula is

called arithmetical if it contains no set quantifiers. The axiom scheme of arith-

metical comprehension consists of the universal closures of all sentences of the
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form

∃X∀n(n ∈ X ↔ ϕ(n))

where ϕ(n) is an arithmetical formula with X not free, but possibly containing

other free variables.

The axiom system ACA0 consists of the number-theoretic axioms; the Σ0
1

induction scheme; and the arithmetical comprehension scheme.8

The first-order part of ACA0 is Peano arithmetic, so the two theories are

equiconsistent and have the same proof-theoretic ordinal, ε0.

The arithmetical comprehension scheme is equivalent to the Σ0
1 comprehen-

sion scheme. This follows from the fact that all of the comprehension schemes

studied in reverse mathematics admit parameters. For the non-trivial direc-

tion of the equivalence, we reason by induction in the metatheory and sup-

pose for some k ∈ ω that we have used Σ0
k comprehension to show that a

set X exists. We can then use Σ0
0 comprehension to obtain its complement

X = { n | n 6∈ X }, which will be a Π0
k set. Finally we apply Σ0

1 comprehension

to obtain a new set which is Σ0
1(X), i.e. Σ0

k+1.

This fact, coupled with the existence of universal lightface Π0
1 formulas

(introduced in §1.6 on RCA0), allows us to prove the finite axiomatisability of

ACA0, since we can replace the infinite scheme of Σ0
1 comprehension by a single

instance in which the formula is a universal one.

Like other systems defined by comprehension schemes, ACA0 has a minimum

ω-model, namely the model

ARITH =
{
X ⊆ ω

∣∣∣ (∃n ∈ ω) X ≤T 0(n)
}

= {X ⊆ ω | X is arithmetical } .

We shall pursue the connection between comprehension schemes and the exis-

tence of minimum ω-models further in section 2.2.

ACA0 has a couple of notable extensions called ACA′0 and ACA+
0 . To un-

derstand their relationship to ACA0, note that arithmetical comprehension is

equivalent over RCA0 to the fact that for any set X ⊆ N and any metathe-

oretic n ∈ ω, the n-th Turing jump of X exists. ACA′0 strengthens ACA0 by

replacing the external n with an internal one: it asserts that for any X ⊆ N
8Here my presentation differs slightly from that of Simpson [2009], who defines ACA0 in

terms of the induction axiom rather than the Σ0
1 induction scheme. This is for uniformity

of presentation, as then all of the Big Five have the same induction principle, rather than

making RCA0 and WKL0 exceptions. This modification is not a substantial one since the

two formulations are proof-theoretically equivalent, as should be clear from the result below

about the first-order part of ACA0.
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and any n ∈ N, X(n) exists. ACA+
0 is stronger still, and consists of ACA0 plus

the assertion that for any X ⊆ N, the ω-jump X(ω) exists (where ω denotes

the order type of the natural numbers under their standard ordering). Both

ACA′0 and ACA+
0 are intermediate systems with axioms that are weakenings of

arithmetical transfinite recursion, the principle that the Turing jump operator

can be iterated along any countable wellordering.

1.9 Arithmetical transfinite recursion

The definition of arithmetical transfinite recursion is somewhat technical, so

for a detailed discussion we refer the reader to §V.2 of Simpson [2009]. Intu-

itively, the definition states that all those sets exist which can be defined by

iterating arithmetical comprehension (or equivalently, the Turing jump) along

a wellordering. The axiom system ATR0 consists of the axioms of ACA0 plus

the scheme of arithmetical transfinite recursion.

The proof-theoretic ordinal of ATR0 is Γ0, also known as the Feferman–

Schütte ordinal or the first impredicative ordinal. This system is therefore

closely connected to Feferman’s programme of predicative reductionism, which

is discussed in §4.4.

1.10 Π1
1 comprehension

Definition 1.10.1 (Π1
1 comprehension and Π1

1-CA0). A formula ϕ is Π1
1 if it

has the form ∀Y ψ where ψ is an arithmetical formula. The Π1
1 comprehension

scheme consists of the universal closures of all formulas of the form

∃X∀n(n ∈ X ↔ ϕ(n))

where ϕ is Π1
1 and X is not free in ϕ.

The system Π1
1-CA0 consists of the number-theoretic axioms; the Σ0

1 induc-

tion scheme; and the Π1
1 comprehension scheme.

Π1
1-CA0 is the strongest of the subsystems of second order arithmetic that

typically appears in reverse mathematical results. It is an impredicative system,

making essential use of quantification over all sets of natural numbers, and

can thus prove the existence of typical impredicatively defined objects such as

Kleene’s O, the set of codes for recursive ordinals.

The reverse mathematics of Π1
1 comprehension is largely focused on de-

scriptive set theory. One striking exception to this is the theorem concerning
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abelian groups mentioned in §1.3. This result is due to Friedman et al. [1983],

using a construction of Feferman [1975b].
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Set existence and closure

2.1 The standard view

The major discovery of reverse mathematics is that ordinary mathematical

theorems concerning countable and countably-representable objects are, in the

vast majority of cases studied to date, either provable in the base theory RCA0

or are proof-theoretically equivalent to another of the Big Five. This is a

robust and remarkable phenomenon. Simpson [2010, p. 115] estimates that

“several hundreds [of theorems] at least” have been found that fall into these

five equivalence classes. While there are a few outliers—a number of which will

be discussed in the course of this chapter—it is important to emphasise that

they are relatively rare compared to theorems which fall within the purview of

the Big Five.

The Big Five phenomenon, as we shall call it, demands an answer to the

question of significance: impressive as this phenomenon is, what metaphysical

or epistemic import does it have? What is the significance of reversals?9

The standard view in the field of reverse mathematics is that the signifi-

cance of reversals lies in their ability to demonstrate what set existence prin-

ciples are required to prove theorems of ordinary mathematics. They show

us, for example, that arithmetical comprehension is required to prove the

Bolzano/Weierstraß theorem, but only weak König’s lemma is needed to prove

the Hahn/Banach theorem for separable Banach spaces. A view of this sort,

in more or less the terms just used, is articulated by Simpson [2009, p. 2] as

his “Main Question”: “Which set existence axioms are needed to prove the

9My concern in this chapter is what we can learn from the existence of reversals, rather

than what we can learn from particular proofs of them. This is not to discount the possibility

that proofs can have explanatory value, as has been suggested by much of the literature in

the philosophy of mathematical practice, including Mancosu [2001], Weber and Verhoeven

[2002], Mancosu [2008], Avigad [2010], Frans and Weber [2014]. But such issues will not be

addressed here.

21



2. Set existence and closure

theorems of ordinary, non-set-theoretic mathematics?” Similar sentiments can

be found elsewhere.10

The virtues of the standard view are worth enumerating. To begin with, it is

straightforward and intuitive: the hierarchy of proof-theoretic strength that we

see in the Big Five is understood as giving a hierarchy of set existence principles

of increasing strength. The standard view also ties together the metaphysics

and epistemology of reverse mathematics in a satisfactory way: if we interpret

the language of second order arithmetic in a direct, realist way as referring to

natural numbers and sets thereof, then knowing which axioms are necessary

to prove some theorem τ gives us detailed information about which sets of

natural numbers exist. Many of the features of reversals which were noted

above are encompassed by this view. For example, the degree of nonconstruc-

tivity of a theorem θ is given by the strength of the nonconstructive set existence

principles required to prove it. Finally, it allows us to understand the various

foundational approaches which can be legitimately formalised within the reverse

mathematics framework as being differentiated (in terms of their consequences,

rather than their justifications) by their commitment to set existence principles

of differing strengths. All in all, it is a strikingly appealing view.

It does, however, suffer from a major weakness: the central concept of a set

existence principle is left unanalysed, and thus the precise content of the view

is highly unclear. The primary goal of this chapter is to provide the missing

analysis and thereby give the content of (a particular interpretation of) the

standard view.

Before proceeding further, let us distinguish two concerns; we shall come

later to the question of how separate they actually are. The first is the sig-

nificance of reversals as a general matter: what do the equivalences proved in

reverse mathematics between theorems of ordinary mathematics and canonical

subsystems of second order arithmetic tell us? The second is the significance

of reversals to a particular system? Depending on the account one offers, the

latter may simply follow from the former; or it may not.

Consider weak König’s lemma, which states that every infinite binary tree

has an infinite path through it. This is effectively a compactness principle: one

way of thinking of it is as stating that the Cantor space 2N is compact. One

theorem of ordinary mathematics that is equivalent to WKL0 is the Heine/Borel

10Such as in Friedman et al. [1983, p. 141], Brown and Simpson [1986, p. 557], Brown

et al. [2002, p. 191], Avigad and Simic [2006, p. 139] and Dorais et al. [2015, p. 2]. There are

many more examples to be found in the reverse mathematics literature, although it should

be noted that many of the participants are students or coauthors of Simpson and thus the

similarity in language is not surprising.
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covering theorem, which states that every covering of the closed unit interval

[0, 1] by a sequence of open intervals has a finite subcovering. In other words,

the Heine/Borel theorem states that [0, 1] is compact. When put in these terms,

it is not surprising that these two theorems are equivalent.

On the standard view, the significance of this equivalence is that it shows

the set existence principle weak König’s lemma to be needed in order to prove

the Heine/Borel theorem. Regardless of what method of proof is used, a cor-

rect proof of this result will always appeal to some principle with the same

proof-theoretic strength as WKL0. Here we have deduced an account of the

significance of a reversal from an account of the significance of reversals in gen-

eral, namely the standard view that reversals demonstrate the strength of set

existence axioms required to prove theorems of ordinary mathematics.

2.2 Set existence as comprehension

The standard view is that the significance of reversals is to be found in their

calibration of the strength of ordinary mathematical theorems by demonstrat-

ing equivalences with set existence principles. In addition to this general thesis,

Dean and Walsh [2012]11 take proponents of the standard view to be commit-

ted to a specific claim about the nature of set existence principles, namely that

they are identical with comprehension principles. Leaving aside the question

of whether or not this accurately characterises the standard position, either as

generally stated or as asserted by particular authors, let us clarify the precise

content of this view, which I call set existence as comprehension or SEC.

A comprehension scheme consists of the universal closures of all formulas

of the form

(2.1) ∃X∀n(n ∈ X ↔ ϕ(n))

where ϕ belongs to some syntactically-defined set of formulas Γ. Common ex-

amples in reverse mathematics are recursive comprehension, arithmetical com-

prehension and Π1
1 comprehension. These define the subsystems RCA0, ACA0

and Π1
1-CA0. Arithmetical comprehension allows ϕ to be any arithmetical for-

mula: that is, a formula containing no set quantifiers. Π1
1 comprehension states

11Unfortunately as of the time of writing Walter Dean and Sean Walsh’s work on reverse

mathematics remains unpublished. I base my attribution of views and arguments to Dean

and Walsh on the slides of their talk [Dean and Walsh 2012]; on my memory of the talk as

presented at the conference The Limits and Scope of Mathematical Knowledge in Bristol on

March 18, 2012; and on my conversations and correspondence with both authors since that

date. I present their argument that the standard view (or the “received view” as they term

it) is mistaken in full below, since it is not yet available in published form.
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that all sets definable by Π1
1 formulas exist. Recursive comprehension states

that the ∆0
1 or recursive sets exist: in the above scheme, ϕ is a Σ0

1 formula

defining a set X such that there is a Π0
1 formula ϕ′ which also defines X.

One might worry that this view leads to too narrow a conception of what

set existence principles are: perhaps there are comprehension principles that

are defined by more fine-grained syntactic restrictions than the arithmetical

and analytical hierarchy can provide. We therefore take a more general view,

and take a comprehension principle to be the comprehension scheme associ-

ated with any subset Φ (resp. pair of subsets (ΦΣ,ΦΠ) for ∆ classes) of the

formulas of L2, just so long as for every class of formulas Γ (resp. pair of classes

(ΓΣ,ΓΠ)) in the arithmetical or analytical hierarchies, if every instance of Φ

is provable from Γ-CA, then Φ ⊆ Γ (resp. ΦΣ ⊆ ΓΣ and ΦΠ ⊆ ΓΠ). With

this definition in hand we can state SEC with greater precision: set existence

principles are just comprehension principles as we have defined them, and the

significance of reversals lies in the strength of comprehension principles that

ordinary mathematical theorems reverse to.

This view has a high degree of prima facie plausibility, given the important

role played by comprehension principles in the foundations of mathematics since

Frege’s ill-starred attempt to reduce mathematics to logic, through the Russell

paradox and the various restricted forms of comprehension that were proposed

in response to it. Comprehension schemes are in general excellent candidate

axioms. The idea that any given formal property (i.e. one defined by a formula

of a formal language properly applied to some domain) has an extension is a

highly credible basic principle, so long as appropriate precautions are taken to

avoid pathological instances. Second order arithmetic is a fragment of simple

type theory and so these difficulties cannot occur.

Moreover, comprehension schemes fall into straightforward hierarchies, with

increasingly strong comprehension principles being characterised by a broader

class of admissible definitions for sets. This harmonises with the reverse math-

ematical discovery that some theorems are true even of the recursive sets, while

others require arithmetical comprehension to find appropriate witnesses. Such

gradations can also be seen as hierarchies of acceptability: if one denies that

uncomputable sets exist then recursive comprehension forms a natural stopping

point; if one repudiates impredicativity then arithmetical comprehension could

be a good principle to adopt.

Of the Big Five subsystems of second order arithmetic which are of primary

importance to reverse mathematics, only three are characterised by comprehen-

sion schemes: RCA0, ACA0 and Π1
1-CA0. The intermediate systems WKL0 and
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2.2. Set existence as comprehension

ATR0 are obtained by adding further principles to a comprehension scheme.

In the case of WKL0 we add weak König’s lemma—the statement that every

infinite binary tree has an infinite path through it—to the recursive compre-

hension scheme. For ATR0 we add to arithmetical comprehension a further

scheme of arithmetical transfinite recursion stating that those sets exist which

can be defined by iterating the arithmetical operations along any wellordering.

Nevertheless, one might well think that weak König’s lemma and arithmetical

transfinite recursion are stated in the form they are purely for instrumental rea-

sons, and that they are in fact equivalent to comprehension schemes of some

sort. The following result shows that this is not the case for weak König’s

lemma: although it is implied by the arithmetical comprehension scheme, it is

not equivalent over RCA0 to any subset of that scheme.12

Fact 2.2.1 (Dean/Walsh). No subset of the arithmetical comprehension scheme

is equivalent over RCA0 to weak König’s lemma.

Proof. The proof relies on the Simpson/Tanaka/Yamazaki theorem [2002]: If

WKL0 proves a statement of the form ∀X∃!Y θ(X,Y ) where θ is arithmetical,

then so does RCA0.

Assume for a contradiction that there is a set of arithmetical formulas Ψ

such that RCA0 proves that Ψ-CA is equivalent to weak König’s lemma. By the

finiteness of proof, we may assume without loss of generality that Ψ is finite.

Then, since RCA0 proves the existence of pairing functions, we may further

assume that there a single instance of arithmetical comprehension

Cϕ(X) ≡ ∃Y ∀n(n ∈ Y ↔ ϕ(n,X))

where ϕ has only the displayed free variables, such that

RCA0 `WKL↔ ∀XCϕ(X).

We then define the arithmetical formula θ(X,Y ) ≡ ∀n(n ∈ X ↔ ϕ(n, Y ). Since

identity for sets is defined as coextensionality, we then have that

RCA0 ` ∀XCϕ(X)↔ ∀X∃!Y θ(X,Y ).

By the Simpson/Tanaka/Yamazaki theorem, ∀X∃!Xθ(X,Y ) is provable in

RCA0, so RCA0 `WKL, which is false, supplying our contradiction.

Fact 2.2.1 was pointed out by Dean and Walsh [2012], who argue that it

shows weak König’s lemma to be a counterexample to SEC. It is an open ques-

tion whether or not weak König’s lemma is equivalent over RCA0 to some non-

arithmetical instance of the full comprehension scheme. In order to support

12My thanks to Walter Dean and Sean Walsh for supplying the details of their proof, which

I reproduce here, and making me aware of Simpson et al. [2002].
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2. Set existence and closure

the claim that weak König’s lemma is a counterexample to SEC, we therefore

need a further argument. One such argument runs as follows: the syntacti-

cally defined complexity classes that give rise to comprehension schemes come

with an associated ordering. Since it is this hierarchy of complexity classes

that motivates the SEC view, the proponent of SEC is thereby committed to a

constraint on which subsets of comprehension schemes constitute set existence

principles. Namely, if a set existence principle is provable from a given com-

prehension scheme, it should be provably equivalent (over an appropriate weak

base theory) to a subset of that scheme.

Crucially, WKL0 is not merely a subsystem of second order arithmetic that

is not equivalent to a comprehension scheme: it is a mathematically natural

one, since weak König’s lemma is equivalent over RCA0 to many theorems of

ordinary mathematics such as the Heine/Borel covering lemma, Brouwer’s fixed

point theorem, the separable Hahn/Banach theorem, and many other theorems

of analysis and algebra.

Simpson [2010, p. 119] defines a subsystem of second order arithmetic as

being mathematically natural just in case it is equivalent over a weak base the-

ory to one or more “core” mathematical theorems. As the results summarised

in chapter 1 show, WKL0, ACA0, ATR0 and Π1
1-CA0 are mathematically nat-

ural systems, since each one is equivalent over RCA0 to many theorems from

different areas of ordinary mathematics.

The notion of mathematical naturalness appears to give us a partial answer

to the question of the significance of reversals: by proving an equivalence be-

tween a theorem of ordinary mathematics τ and a subsystem of second order

arithmetic Sτ , we thereby demonstrate that Sτ is a mathematically natural

system. However, this still leaves us in the dark about the significance of the

reversal for the theorem τ : what important property of this theorem of ordi-

nary mathematics do we come to know when we prove its equivalence over a

weak base theory to Sτ , that we did not know before?

It is also worth remarking that mathematical naturalness is not an absolute

notion: some systems may, in virtue of being equivalent to many core mathe-

matical theorems, be more mathematically natural than those which are only

equivalent to a few such theorems. When a claim of the form “S is a math-

ematically natural system” is used in an unqualified way in the rest of this

chapter, it should be taken to mean that S meets the minimum requirement of

being equivalent to at least one core mathematical theorem.

Dean and Walsh’s argument that SEC fails runs as follows: since weak

König’s lemma is neither a comprehension principle, nor equivalent to one, it
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2.3. Conceptual constraints

cannot be a set existence principle (as by SEC, set existence principles are

just comprehension schemes). So the significance of reversals to weak König’s

lemma cannot lie in the comprehension scheme that is both necessary and

sufficient to prove them, since there is no such scheme. Either the significance of

reverse mathematics does not lie in the set existence principles which theorems

reverse to, or the set existence as comprehension view is false. Proponents of

the set existence view are thus standing on shaky ground. They must adopt

a more sophisticated way of spelling out their core contention, or abandon the

idea that the significance of reversals lies in set existence principles.

Although weak König’s lemma is not equivalent to a comprehension princi-

ple, it is equivalent to another type of schematic principle, namely a separation

scheme. The separation scheme for a class of formulas Γ holds that if two

formulas ϕ,ψ ∈ Γ have disjoint extensions, then there exists a set including

the extension of ϕ and excluding the extension of ψ. Weak König’s lemma is

equivalent over RCA0 to Σ0
1 separation, while ATR0 is equivalent to Σ1

1 separa-

tion.13

Definition 2.2.2 (separation scheme). Let Γ be a class of formulas, possibly

with parameters. The Γ-separation scheme, Γ-SEP, consists of all axioms of

the form

∀n(¬(ϕ(n) ∧ ψ(n)))→ ∃X∀n((ϕ(n)→ n ∈ X) ∧ (ψ(n)→ n 6∈ X)),

where ϕ,ψ ∈ Γ.

One response to Dean and Walsh’s argument is to endorse the following

more expansive conception of set existence principles: both comprehension

schemes and separation schemes are set existence principles. In line with our

existing terminology, we call this proposal SECS. This new conception does

solve the immediate problem, since each of the Big Five are equivalent over

RCA0 to either a comprehension scheme or a separation scheme. But although

the SECS view accommodates weak König’s lemma, and thus evades the coun-

terexample that sinks SEC, it does so at the price of a seemingly ad hoc mod-

ification to the view.

2.3 Conceptual constraints

The arguments levelled against the SEC account and its variants tacitly appeal

to different constraints which the concept of a set existence principle should

13Both these results are well-known. The former is lemma 2.6 of Simpson [1984], which is

related to theorem 6.1 of Jockusch and Soare [1972]. The latter is also due to Simpson and

was announced in Simpson [1987] and is proved as theorem V.5.1 in Simpson [2009].
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2. Set existence and closure

satisfy, if it is to play a role in explaining the significance of reversals. I shall

now attempt to make these constraints explicit, by presenting three conditions

which any satisfactory account of the concept of a set existence principle should

meet, together with some reasons to believe that these conditions are plausible.

I shall then show how the SECS account meets two of the stated conditions,

but fails to satisfy the third.

(1) Nontriviality. Not every subsystem of second order arithmetic expresses

a set existence principle.

(2) Comprehensiveness. There are no subsystems S of second order arith-

metic which are equivalent to ordinary mathematical theorems and yet are

not equivalent to a statement expressing a set existence principle.

(3) Unity. Set existence principles are conceptually unified.

Consider some account of set existence principles A. Such an account should

lend substance to the claim that the significance of reversals lies in the set

existence principles necessary to prove theorems of ordinary mathematics. If

A does not satisfy the nontriviality condition (1) then it cannot do this. There

are many statements of second order arithmetic that prima facie are not set

existence principles, so violating the nontriviality condition entails failing to

provide a theory that is truly an account of set existence principles at all.

Simple examples of this are arithmetical statements; a class of examples which

is more problematic from the standpoint of the standard view is studied in §2.7.

On the other hand, if A does not meet the comprehensiveness condition

(2) then it also fails to provide an account of the significance of reversals in

general—although it might still account for the significance of reversals to par-

ticular systems. Since the claim of the standard view is that significance of

reverse mathematical results lies in giving the set existence principles necessary

for the truth of a given theorem, any counterexample reduces the plausibility

of the claim in direct proportion to the mathematical naturalness of the system

which A does not account for. This is why the fact that weak König’s lemma

is not a comprehension scheme is so damaging to the SEC account: since it

has been proved equivalent to many tens of core mathematical theorems, we

have far more reason to abandon the philosophical view that reversals track

set existence principles, let alone the specific thesis that they track degrees of

comprehension, than we do to think that the mathematical naturalness of weak

König’s lemma is some kind of mirage or formal artefact, which is what would

be required if we sought to elude the conclusion that it really constitutes a

counterexample to SEC.
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Any failure of A to meet the unity condition (3) has a somewhat different

character. The standard view is an attempt to provide a general account of the

significance of reversals, one that does not make overt reference to particular

systems. Such generality requires that the systems which A countenances as

set existence principles have some features in common. For example, while

recursive comprehension, arithmetical comprehension and Π1
1 comprehension

are all different, the SEC account still satisfies the unity condition precisely

because they are all comprehension schemes, and it can offer a theory under

which all comprehension schemes can legitimately be considered to be set ex-

istence principles. If A does not satisfy the unity condition then it cannot be

considered as offering a satisfactory theory of set existence principles; if no

account meeting this condition can be found then we are reduced to merely

offering specific accounts of the significance of reversals to particular systems,

rather than a general theory of the significance of reverse mathematical results.

Accounts of the concept of a set existence principle can satisfy the unity con-

dition in stronger or weaker ways. When there is a strong connection between

the different systems considered to be set existence principles, the account sat-

isfies the unity condition to a greater degree. In such cases the significance of

reversals to a particular system S will in large part be given in terms of the

theory of set existence principles, rather than in terms of specific properties of

S that are at substantial variance to other set existence principles. The SEC

account exhibits this property: different comprehension schemes are clearly all

very much the same type of principle, and can be obtained by simple syntac-

tic restrictions on a stronger principle, namely the full comprehension scheme.

Nevertheless, requiring that any theory of set existence principles satisfies the

unity condition to the same degree that the SEC account does seems like an

onerous requirement that may well be impossible to meet in a theory that also

satisfies the comprehensiveness condition. Allowing for theories to satisfy the

unity requirement to a lesser degree, and have different set existence principles

bear a mere family resemblance to one another, rather than be strictly of the

same type of axiom in some strong syntactic sense, seems like a reasonable

relaxation of the condition.

2.4 A counterexample to SECS

Admitting separation schemes as set existence principles is, prima facie, an

ad hoc modification of the SEC view that seems to weaken one of the main

strengths of the SEC view, namely its strong satisfaction of the unity condition
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2. Set existence and closure

(3). The primary point of difference between separation and comprehension

schemes is that as straightforward definability axioms, comprehension schemes

tell us which particular sets exist. Separation schemes, on the other hand, do

not always do so: an axiom asserting the mere existence of a separating set

may not pin down a particular set as the witness for this assertion.14 This

fact is an illustration of Friedman [1975]’s point that “Much more is needed

to define explicitly a hard-to-define set of integers than merely to prove their

existence.”

To rebut the argument that SECS is ad hoc, and show that it does af-

ter all satisfy the unity requirement, we must show that there is some de-

gree of conceptual commonality between comprehension schemes and sepa-

ration schemes. Following Lee [2014], we can treat the Big Five in a uni-

fied way by understanding them as interpolation schemes. These hold that

given two predicates ϕ(n) and ψ(n), if the extension of the latter is a superset

of the extension of the former, then an interpolating set Z exists such that

{ n | ϕ(n) } ⊆ Z ⊆ { n | ψ(n) }.

Definition 2.4.1 (interpolation scheme). Let Γ and ∆ be sets of L2-formulas,

possibly with parameters. The Γ-∆ interpolation scheme, Γ-∆-INT, is the set

of all sentences of the form

(2.2) ∀m(ϕ(m)→ ψ(m))→ ∃X∀m((ϕ(m)→ m ∈ X) ∧ (m ∈ X → ψ(m)))

where ϕ ∈ Γ and ψ ∈ ∆.

As Lee [2014] points out, all of the Big Five are equivalent to interpolation

schemes. RCA0 is equivalent to Π0
1-Σ0

1-INT; WKL0 to Σ0
1-Π0

1-INT; ACA0 to

Σ0
1-Σ0

1-INT; ATR0 to Σ1
1-Π1

1-INT; and Π1
1-CA0 to Σ1

1-Σ1
1-INT. This should go at

least some way towards ameliorating our worry that SECS fails to satisfy the

unity condition (3), since we can now see that both comprehension schemes

and separation schemes are actually interpolation schemes.

Mere syntactic unity should not by itself convince us of the conceptual unity

of comprehension principles and separation principles; after all, a sufficiently

broad syntactic class of sentences will eventually unify all statements. The

notion of an interpolation scheme is, however, relatively narrow and it is not

hard to see that it is a reasonably straightforward generalisation of the concepts

of separation and comprehension. The comprehension scheme for some class

of formulas Ξ can be derived from the Ξ-Ξ interpolation scheme, since for any

instance of comprehension we can use the given formula in both places in the

14A striking theorem in this vein is that the only sets which every ω-model of Σ0
1-separation

(i.e. WKL0) has in common are the recursive ones [Simpson 2009, corollary VIII.2.27].
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2.4. A counterexample to SECS

interpolation scheme and thus derive the comprehension instance. Separation

schemes, on the other hand, arise when given some formula class ∆, the formula

class Γ consists of the negations of the formulas in ∆, such as when ∆ = Σ0
1

and Γ = Π0
1.15

Nonetheless, even if we grant that SECS satisfies the unity condition (3), it

still fails to offer a satisfactory theory of set existence principles, since there is

a mathematically natural counterexample which shows that it does not satisfy

the comprehensiveness condition (2). That counterexample is the axiom known

as weak weak König’s lemma. Weak weak König’s lemma was introduced by

Yu [1987], and as the name suggests, it is a further weakening of weak König’s

lemma. Weak König’s lemma asserts that every infinite binary tree has an

infinite path; weak weak König’s lemma is the restriction of this principle to

binary trees with positive measure.

Definition 2.4.2 (weak weak König’s lemma). Weak weak König’s lemma is

the statement that if T is a subtree of 2<N with no infinite path, then

lim
n→∞

|{ σ ∈ T | lh(σ) = n }|
2n

= 0.

The system WWKL0 is given by adjoining the axiom weak weak König’s lemma

to the axioms of RCA0.

The system WWKL0 obtained by adjoining weak weak König’s lemma to

RCA0 is strictly intermediate between RCA0 and WKL0 [Yu and Simpson 1990],

and is equivalent over RCA0 to a number of theorems from measure theory, such

as a formal version of the Vitali Covering Theorem [Brown et al. 2002]; the

countable additivity of the Lebesgue measure [Yu and Simpson 1990]; and the

monotone convergence theorem for the Lebesgue measure on the closed unit

interval. A survey of results in this area is given in Simpson [2009, §X.1]. These

equivalences show that weak weak König’s lemma is mathematically natural,

in the sense of Simpson. By the comprehensiveness condition (2) we should

therefore expect a good account of set existence principles to include it.

It follows from fact 2.2.1 that WWKL0 is not equivalent to any subset of

the arithmetical comprehension scheme, since every model of WKL0 is also a

15Separation schemes and comprehension schemes do not always dovetail as nicely as they

do for the Big Five. One might expect, for example, that the Π1
1-separation scheme would

be equivalent to ∆1
1-CA0, but that is not the case: Montalbán [2008] showed via a forcing

construction that Π1
1-separation lies strictly between ∆1

1-CA0 and Σ1
1-AC0. However since

ordinary mathematical theorems that are also theorems of hyperarithmetical analysis are

few and far between—Montalbán [2006]’s example of a statement about indecomposable

linear orderings is the only substantial example—this fact cannot at present be considered a

problem for the SECS view.
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2. Set existence and closure

model of WWKL0. Yu and Simpson [1990, §2, pp. 172–3] proved that not

every model of WWKL0 is a model of WKL0. Their argument involves the

construction of what is known as a random real model, and it implies that

WWKL0 is not equivalent to a separation principle either. SECS therefore fails

to accommodate a mathematically natural system, and so fails to satisfy the

comprehensiveness condition (2).

Theorem 2.4.3 (Yu and Simpson 1990). Weak weak König’s lemma is not

equivalent over RCA0 to any subscheme of the Σ0
1-separation scheme.

A virtue that it would be reasonable to expect of any account of set exis-

tence principles is the ability to incorporate the discovery of new subsystems

of second order arithmetic which turn out to be equivalent to theorems of or-

dinary mathematics. Banking on SEC or its extensions amounts to a bet that

all such new systems will be comprehension schemes or separation schemes.

The discovery of weak weak König’s lemma and the role it plays in the reverse

mathematics of measure theory shows that such optimism is unfounded even

for the systems which are already known. In the next section I will advance an

account of set existence principles which does not suffer from this weakness.

2.5 Closure conditions

In a sense the term set existence principles is an unfortunate one, since it might

suggest that the relevant principles assert the unconditional existence of some

sets, independently of the other axioms of the theory. A better term, which

more accurately captures the natures of these axioms, is closure conditions—

more precisely, closure conditions on the powerset P(N) of the natural numbers.

Weak König’s lemma is a closure condition in this sense: it asserts that P(N)

is closed under the taking of infinite paths through infinite binary trees.

This example shows that closure conditions are not, in general, bare or

unconditional statements of set existence. Rather, they hold that given the

existence of any object X with certain properties, there exists some other object

Y with certain properties. Recursive comprehension proves the existence of

infinite, recursive subtrees of 2<N; weak König’s lemma states that each such

tree has an infinite path through it. In the absence of a suitable base theory

such as RCA0, weak König’s lemma would not allow us to prove the existence

of any sets at all. In this sense it is a conditional set existence principle.

Comprehension schemes, on the other hand, appear at first blush to be set

existence principles tout court. Nevertheless, they too are better understood

as closure conditions, because the comprehension principles used in reverse
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mathematics all admit parameters. Comparing the standard formulation of

recursive comprehension (in which parameters are allowed) with the parameter-

free version makes this clear.

The parameter-free recursive comprehension scheme asserts the existence

of those sets definable in a ∆0
1 way, without reference to any other sets. But

recursive comprehension with parameters instead asserts that P(N) is closed

under relative recursiveness: if X,Y ⊆ N exist, so does every Z ≤T (X⊕Y ). It

is easy to construct models of parameter-free recursive comprehension that are

not models of RCA0: REC ∪ {X } will do, for any X ⊆ ω such that there is a

Y ⊆ ω with ∅ <T Y <T X. This model does not contain Y , since it is neither

recursive nor equal to X. But any ω-model of RCA0 containing X would also

have to include Y , since the standard version of recursive comprehension asserts

that the powerset is closed under ∆0
1 definability with parameters, not merely

that the sets definable without parameters in a ∆0
1 exist—and since Y <T X,

Y is ∆0
1 definable from X. Similar points apply to arithmetical comprehension

and Π1
1 comprehension.

While comprehension principles do have a different flavour to other clo-

sure conditions, they can often be characterised in equivalent ways which more

closely hew to the model described above for weak König’s lemma. Arithmeti-

cal comprehension, for example, is equivalent over RCA0 to König’s lemma:

every finitely branching infinite subtree of N<N has an infinite path through

it. Π1
1-CA0 is equivalent over RCA0 to the statement that for every subtree

T ⊆ N<N, if T has an infinite path then it has a leftmost such path [Avigad

and Simic 2006, lemma 3.3].

With these points in mind, the main thesis of this chapter is the following:

the significance of a provable equivalence between a theorem of ordinary math-

ematics τ and a subsystem T of second order arithmetic lies in telling us what

closure conditions P(N) must satisfy in order for τ to be true. This is a bit of

a mouthful, so we shall adopt the following slogan as an abbreviation for the

view: reversals track closure conditions.

I do not claim complete originality for this view. Feferman [1992, p. 451]

identifies set existence principles with closure conditions in his discussion of

what mathematical existence principles are justified by empirical science (via

the indispensability argument). Similar positions have also been taken in the

reverse mathematics literature, for example by Dorais, Dzhafarov, Hirst, Mileti,

and Shafer [2015, p. 2], who write that each subsystem studied in reverse math-

ematics “corresponds to a natural closure point under logical, and more specif-

ically, computability-theoretic, operations”, and by Chong, Slaman, and Yang
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[2014, p. 864], who write that “Ultimately, we are attempting to understand

the relationships between closure properties of 2N”. Shore [2010] also states

that the Big Five correspond to recursion-theoretic closure conditions. This is

clearly something in the air. However, none of these authors make precise what

they mean by a closure condition, nor draw out the consequences of this view,

although Chong et al. certainly consider it to have consequences for the prac-

tice of reverse mathematics: for instance they take it to show that ω-models

have a particular importance.

On this particular point, more will be said later. For now, let us attempt to

clarify the content of the view that reversals track closure conditions. Towards

that end let us draw a distinction between two things: a closure condition

in itself, and the different axiomatisations of that closure condition. Closure

conditions are extensional: they are relations which the powerset P(N) may be

closed under. Axiomatisations of closure conditions are intensional: one and the

same closure condition will admit of infinitely many different axiomatisations

(or as they may be thought of, presentations). So for example, the Turing

jump operator gives rise to a closure condition, of which some of the better-

known axiomatisations are (modulo the base theory RCA0): the arithmetical

comprehension scheme; König’s lemma; and the Bolzano/Weierstraß theorem.

The upshot of this distinction is that by proving reversals we show that dif-

ferent theorems of ordinary mathematics correspond to the same closure condi-

tions. The significance of reversals thus lies, at least to a substantial extent, in

placing these theorems in a hierarchy of well-understood closure conditions of

known strength. Note also that there is a duality here: an equivalence between

a theorem τ and a system Sτ tells us something about τ , namely its truth

conditions in terms of what closure condition must hold for it to be true, but

it also tells us something about the closure condition itself, namely how much

of ordinary mathematics is true in P(N) when that closure condition holds.

The view that reversals track closure conditions has some marked advan-

tages over the SEC account and its variants. Most notably, it can accommodate

all of the counterexamples discussed so far. Weak König’s lemma is clearly a

closure condition. So is weak weak König’s lemma, and thus the new ac-

count also succeeds where the SECS view fails. Other principles which have

been studied in reverse mathematics—arithmetical transfinite recursion, choice

schemes, and many others—can all be understood as expressing closure con-

ditions on P(N). Moreover, this account will also accommodate any similar

principle discovered to be equivalent to a theorem of ordinary mathematics.

The Big Five form a linear order under the relation of proof-theoretic
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Figure 2.1: Provability diagram for the Big Five, WWKL0 and the Ramsey-

theoretic systems discussed in this section. All arrows denote strict implica-

tions: A⇒ B means that RCA0 proves that A implies B, but not conversely.

strength. Adding weak weak König’s lemma does not change the picture:

WWKL0 is a stronger system than RCA0, but weaker than WKL0. The SEC

view is in part appealing because syntactic complexity provides a simple way

to generate a linear hierarchy of natural systems of increasing strength. As

we have seen, this account is susceptible to counterexamples that consist of

intermediate systems which are not equivalent to comprehension schemes. A

different kind of problem is posed by incomparable statements, i.e. ϕ and ψ

such that RCA0 proves neither that ϕ → ψ nor that ψ → ϕ. Such examples

sit uneasily with an account such as SEC whose appeal seems to include the

neat linear order of systems it provides, founded on an increase in the syntactic

complexity of formulas allowed into the comprehension scheme.

Much recent research in reverse mathematics has focused on the “Reverse

Mathematics Zoo”16 of systems between ACA0 and RCA0, which form not a

linear order but a rather messy directed graph. Thus far there are few examples

of ordinary mathematical theorems which fall outside the Big Five, and thus few

examples of incomparable statements. However, there is one striking example

which has been extensively studied: Ramsey’s theorem for pairs, or as it is

usually known, RT2
2.

16http://rmzoo.math.uconn.edu [Dzhafarov 2015]. More implication diagrams can be

found in Shore [2010], pp. 391 and 394, and chapter 8 of Hirschfeldt [2014] on pp. 139–142.
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Definition 2.5.1. Given a set X ⊆ N and any n ∈ N, the set of finite subsets

of X with size n is denoted [X]n. A k-colouring of [X]n is a function f : [X]n →
N�k. A set H ⊆ X is homogeneous for a k-colouring f of [X]n if f is constant

on [H]n, i.e. all n-element subsets of H are assigned the same colour by f .

Ramsey’s theorem states that for all k, n ∈ N, every k-colouring of [N]n has

an infinite homogeneous set. This statement implies ACA0, and has a natural

class of weakenings, where we simply fix k and n to be particular natural

numbers. In particular the statement RTnk is that given some fixed n, k ∈ ω,

every k-colouring of [N]n has an infinite homogeneous set. One particular

instance of this scheme, Ramsey’s theorem for pairs or RT2
2, has been the

object of intense study in reverse mathematics [Cholak et al. 2001]. It stands

out as a rare example of a system which falls outside the usual linear order of

the Big Five, by being incomparable with WKL0. This result follows from the

work of Jockusch [1972], who proved that WKL0 does not imply RT2
2, and Liu

[2012], who proved that RT2
2 does not imply WKL0.

Ramsey’s theorem for pairs is, given its relationship to other, similar com-

binatorial statements, clearly a reasonably natural combinatorial principle.

One might, however, hesitate before anointing RT2
2 a theorem of ordinary

mathematics—at least as that term has been used so far. After all, it is a

combinatorial statement whose main use has been in logic. Drawing a parallel

with the Paris–Harrington statement might be fruitful. It too is a combina-

torial principle related to Ramsey’s theorem, and it too has been claimed as

a natural example, in that case of a mathematically natural statement in the

language of arithmetic which is unprovable in Peano arithmetic.

We can put aside this concern for now, and instead make a conditional

claim. If RT2
2 provides us with an example of an ordinary mathematical theorem

that is incomparable with one of the Big Five (or if some new example of this

phenomenon is discovered in the future), then the apparent linearity of systems

provided by SEC and similar views will find it problematic to accommodate the

more complex landscape induced by such examples. The view that set existence

principles are closure conditions, on the other hand, seems much more amenable

to the existence of incomparable systems. There is nothing in the notion of

a closure condition—save where our intuitions have been corrupted by the

expectation of linearity induced by staring at the Big Five for too long—that

rules out the existence of incomparable closure conditions.

A related phenomenon is that of splitting theorems, which show that some

system T can be ‘split’ into two seemingly simpler systems T1 and T2 whose

conjunction is equivalent to T . The most prominent example of this is again
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provided by RT2
2, which Cholak, Jockusch, and Slaman [2001, lemma 7.11]

showed to be equivalent to the conjunction of two other principles: stable

Ramsey’s theorem for pairs, SRT2
2, and the cohesiveness principle COH. A

colouring f : [N]2 → { 0, 1 } is stable if for every x ∈ N there exists a colour

c ∈ { 0, 1 } such that for all sufficiently large y, f(x, y) = c.

SRT2
2: Every stable 2-colouring of pairs of natural numbers has an infinite

homogeneous set.

COH: For every sequence of sets 〈Ak|k ∈ N〉 there exists an infinite set B such

that, for every i, either B −Ai or B ∩Ai is finite.

Neither of these two principles imply one another over RCA0: they are incom-

parable.17 Yet their conjunction is equivalent to a third principle, namely RT2
2.

Again, the linear nature of comprehension principles seems to militate against

the incorporation of splitting systems into the SEC account, at least without

some substantial conceptual overhaul. On the other hand, that we can obtain

new closure conditions by conjoining existing ones is a simple and appealing

principle.

Along with systems defined by a conjunction of two principles, there are also

disjunctive systems. Perhaps surprisingly, there are even reversals to such sys-

tems from theorems of ordinary mathematics, such as Friedman et al. [1993]’s

proof that the existence for all n of n-fold iterates of continuous mappings of the

closed unit interval into itself is equivalent to the disjunction of Σ0
2 induction

and weak König’s lemma.

Neither of the two properties just discussed, namely the existence of incom-

parable systems and splitting systems, are supposed to provide knock-down

arguments against SEC or its variants. The point is rather to show that if

we take set existence principles to be closure conditions, it gives us a supple

framework which can accommodate these interesting features of the reverse

mathematics hierarchy. That it does so should give us confidence that fu-

ture discoveries of theorems of ordinary mathematics with such features can

be incorporated into the view without the ad hoc modifications that the SEC

account seems to require.

Before moving on, I must stress that I have not attempted to provide a

definition of a closure condition. Instead I have given an intuitive account, and

argued informally that at least the systems listed above, including both the Big

Five and the major counterexamples to the SEC view and its variants, are in

17Cholak, Jockusch, and Slaman [2001] showed that COH does not imply RT2
2, and thus

does not imply SRT2
2. The converse was recently proved by Chong, Slaman, and Yang [2014].
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fact axiomatisations of closure conditions. One property that all these systems

have in common is that they are proper extensions of RCA0—that is to say,

their axioms are not all provable in RCA0. Moreover, the equivalences which I

take to show that different statements express the same closure condition are

in general proved in the usual base theory for reverse mathematics, namely

RCA0. One might therefore wonder about the degree to which the concept of a

closure condition on P(N) is relative to the base theory: are there RCA0-closure

conditions, ACA0-closure conditions and so on? If so, what are the implications

for the account? These concerns will be taken up in §2.7.

The view that reversals track closure conditions is intended as a reconstruc-

tion of the standard view: reversals are significant because they tell us what

set existence axioms are necessary to prove theorems of ordinary mathematics.

As such, it is an attempt to give a relatively precise and well-motivated version

of the set existence view, while accommodating counterexamples to other ver-

sions of the view such as SEC. However, if one hews to Dean and Walsh’s claim

that advocates of the standard view are committed to SEC, then the present

account must instead be understood as a new theory about the significance of

reversals, rather than as a way of spelling out the standard view. Little hangs

on this exegetical detail; the key question is whether or not the view that re-

versals track closure conditions provides a satisfactory account of the epistemic

and metaphysical significance of reversals.

To determine the answer to this question, we return to the three conditions

that, as I argued in §2.2, any account of set existence principles should satisfy:

nontriviality (1), comprehensiveness (2) and unity (3). By analysing the notion

of a set existence principle in terms of closure conditions on the powerset of

the natural numbers, the account clearly offers a unified picture of what set

existence principles are. However, the notion of a closure condition is a very

general one. In fact, there do not seem to be any prima facie reasons to rule out

(at the very least) every Π1
2 sentence expressing a closure condition. By way

of contrast, the specificity of the concept of a comprehension principle means

that the SEC account strongly satisfies the unity condition. But this very

feature undermines its suitability as an analysis of the concept of a set existence

principle, since it fails to be sufficiently comprehensive, as the existence of

striking counterexamples such as weak König’s lemma illustrates.

We therefore must conclude that although the view that reversals track

closure conditions satisfies the unity condition, it only weakly satisfies it. As

such, it is reasonable to wonder to what degree the view can offer a compelling

explanation of the significance of reversals, since if it is easy for a relation to
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be considered a closure condition, then it is unclear what light this can shed on

the importance of particular reversals. To put it another way, what more does

this account say about the difference between a theorem τ ’s being equivalent

to weak König’s lemma rather than arithmetical comprehension?

Note that whilst being a closure condition is a low bar for a principle to

clear, it is still nontrivial: not all subsystems of second order arithmetic express

closure conditions. If every Π1
2 sentence expresses a closure condition, then this

does at least give us a weak but nontrivial syntactic criterion for falling under

this concept. Moreover there is a clear sense in which all closure conditions

are the same kind of thing: if weak König’s lemma and Ramsey’s theorem for

pairs are not in the same class of principles, they do at least bear a family

resemblance to one another. With this in mind I contend that not only is

weakly satisfying the unity condition sufficient to make the view that reversals

track closure conditions a viable account, but that weak satisfaction of this

condition is all that one can expect of an account of set existence principles

that accommodates not only weak König’s lemma and its weakenings, but the

rest of the Zoo as well.

As we have seen, there is an inherent tension between comprehensiveness

on the one hand, and strong unity and nontriviality on the other. This should

lead us to conclude that if we are to accommodate the data then we are un-

likely to end up with an account that can strongly satisfy the unity condition.

Moreover, strong unity simply doesn’t seem to be a feature of the class of

mathematically natural systems. The different principles, although they have

features in common, have different properties and appear to be justified in

different ways.18

Given this tension between our desiderata for a good theory of set existence

principles, and our overriding concern to explain the significance of reversals, we

must balance our different concerns. I contend that given the choice, we should

prefer a more general account that only weakly satisfies the unity condition but

can accommodate more mathematically natural systems.

The feature of this view which allows it to both satisfy the unity condi-

tion and accommodate the counterexamples to the SEC view and its variants,

namely its generality, becomes a weakness when we consider the nontriviality

condition (1). The account does satisfy the letter of the law, as arithmetical

statements cannot be considered to express closure conditions, and thus ac-

cording to the account they do not express set existence principles. Neither

do Π1
1 statements, such as those expressing that a given recursive ordinal α

18This may be one lesson to be drawn from the connection between the Big Five and

different foundational programmes studied in chapter 4.
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is wellordered. This points to a class of possible counterexamples that could

undermine the account’s claim to satisfy the comprehensiveness condition (2),

a problem that is addressed in §2.7. Nevertheless, it is hard to escape from the

conclusion that at least every Π1
2 statement should be considered a closure con-

dition. After all, it is the very form of these statements—which assert that for

every set X ⊆ N of a certain sort, there exists a set Y ⊆ N of a different sort—

that brought us to consider the view that reversals track closure conditions in

the first place.

In fact, the situation is more serious than it initially appears. Thus far we

have only considered closure conditions with Π1
2 formulations, but not even all

of the Big Five have Π1
2 definitions. In particular, Π1

1-CA0 is not equivalent over

ATR0 to any Π1
2 statement, although it is straightforwardly expressed as a Π1

3

sentence [Marcone 1996, corollary 1.10]. There are even theorems of topology

which exceed the strength of Π1
1 comprehension, such as “every countably based

MF space which is regular is homeomorphic to a complete separable metric

space” which is equivalent to Π1
2 comprehension [Mummert and Simpson 2005].

Such theorems will not be expressible as Π1
3 statements, so we must consider yet

more complex sentences as also expressing closure conditions if we are to bring

them into the account. Since Π1
n+2 statements express closure conditions for Π1

n

relations, extending the account that reversals track natural closure conditions

to include all Π1
n+2 statements seems like an obvious and well-motivated step.

But this makes the account’s apparent violation of the spirit of the nontriviality

condition (1) even more acute, since it is not merely all Π1
2 statements we have

to worry about, but Π1
n statements for all n ≥ 2. In the next section we shall

consider some restrictions on the class of closure conditions which might allow

the account to avoid the charge of triviality.

2.6 Naturalness

We have already seen one distinguished class of subsystems of second order

arithmetic, namely the mathematically natural ones which are equivalent to one

or more core mathematical theorems. Unfortunately, this notion will not help

us to resolve the weakness of the view that reversals track closure conditions

with respect to the nontriviality condition (1). In particular, mathematical

naturalness cannot serve as an explanation of the Big Five phenomenon: it give

us no insight into why these systems, and not others, are the mathematically

natural ones. What is needed instead is some notion of naturalness that serves

to thin out the class of admissible closure conditions, such that we could then
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show that this new class of systems contains or equals the mathematically

natural ones.

As we have seen in the cases of SEC and SECS, highly restrictive accounts of

what set existence principles are appear highly vulnerable to counterexamples.

One response is to appeal to the much used but rarely explained distinction

between natural formal theories and artificial ones created by applications of

diagonalisation. To avoid confusion with the related but distinct concept of

mathematical naturalness defined in section 2.2, let us call this logical or com-

binatorial naturalness, since the axiom systems in question typically have a

combinatorial or computability-theoretic flavour. The revised version of the

view then holds that the significance of reversals lies in their tracking logically

natural closure conditions on P(N).

The property of mathematical naturalness is one that is at least prima facie

dependent on a parameter, namely the base theory. Logical naturalness is more

freestanding, since it is an intensional notion: grasping that a theory is logically

natural simply requires grasping the concepts involved in its statement, while

mathematical naturalness is given extensionally, in terms of the existence of an

equivalence with a theorem of core mathematics.

Logical naturalness is a very broad notion. It does answer the triviality

concern, but only just. Apart from concerns that one might have over the

very coherency of the concept, it is unclear whether adopting it does much to

assuage the concerns voiced in the previous section that the view that reversals

track closure conditions provides a satisfactory answer to the question of the

significance of reversals.

2.7 Exceptional principles

The view that reversals track closure conditions on P (N) is a more satisfactory

one than the SEC interpretation of the standard view, since it can accommodate

Π1
2 counterexamples such as weak König’s lemma. All of the Big Five are

naturally understood as closure conditions, with some caveats in the case of

Π1
1-CA0, namely that it cannot be expressed as a Π1

2 sentence but only as a

Π1
3 assertion; for details see corollary 1.10 of Marcone [1996]. Moreover, it is

to be hoped that this view is indeed non-trivial in the sense of the preceding

section. However, there is an additional class of exceptional principles which

do not express closure conditions, namely Π1
1 assertions expressing that some

recursive linear order is a wellordering. A typical example is the statement

WO(ωω), which asserts that the recursive set W coding a linear order <W
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isomorphic to ωω, in fact codes a wellordering. Since ωω is the proof-theoretic

ordinal of RCA0, this statement cannot be proved in RCA0, or indeed in WKL0.

That there are statements which neither express closure conditions nor are

provable in the base theory RCA0 is not, in and of itself, problematic for the ac-

count. What does cause difficulty is the fact that there are theorems of ordinary

mathematics which are equivalent over RCA0 to some of these statements—in

other words, there are mathematically natural systems of this sort. The most

striking example is the Hilbert basis theorem, which Simpson [1988b] showed

to be equivalent over RCA0 to WO(ωω).

The Hilbert basis theorem is a fundamental result in algebra. Its non-

constructive character was thought remarkable at the time of its discovery,

although its role in mathematical history is somewhat over-mythologised, as

one can see by consulting McLarty [2012]. The equivalence between the Hilbert

basis theorem and WO(ωω) should therefore be taken very seriously as a po-

tential counterexample to the view that reversals track closure conditions.

In the same paper Simpson also shows that the Robson basis theorem, a

generalisation of the Hilbert basis theorem, is equivalent over RCA0 to the state-

ment that ωω
ω

is wellordered. Another mathematically natural statement of

this sort can be found at the level of the small Veblen ordinal ϑΩω. Rathjen and

Weiermann [1993] showed that the graph-theoretic result known as Kruskal’s

Theorem is equivalent to the statement that this ordinal is wellfounded. The

resulting theory WO(ϑΩω) is strictly intermediate between ATR0 and Π1
1-CA0

in terms of consistency strength, and is incomparable with ACA0 and ATR0 in

terms of proof-theoretic strength.

All of this evidence points quite clearly to the conclusion that there is a

hierarchy of mathematically natural Π1
1 statements which assert that certain

ordinal notations do in fact characterise wellorderings. This presents a se-

rious problem for the view that reversals track closure conditions since such

statements are transparently not closure conditions on P(N). A wellordering

statement of this sort is a universal statement asserting that, given some fixed

set W that codes a recursive linear order <W , no set X codes an infinite de-

scending sequence in <W . In other words, it says that a certain class of sets

does not exist, and it is difficult to see how such a statement could be considered

a closure condition.

Systems such as WO(ωω) are, however, also problems for other versions of

the standard view. Since they are neither comprehension schemes nor separa-

tion schemes, wellordering statements are counterexamples to SEC and SECS

just as surely as they are counterexamples to the view that reversals track
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Figure 2.2: A comparison between the Big Five and the wellordering principles

discussed in this section. A⇒ B means that A proves the axioms of B but not

conversely, while C 99K D means that C proves the consistency of D.

closure conditions. Moreover even a näıve view that leaves the notion of set

existence principle largely unanalysed is likely to find such examples problem-

atic, since they simply do not look like set existence principles—if anything,

they seem to be set non-existence principles.

At this point there seem to be two strategies available for the partisan of the

standard view. The first is to find a way to rule out these Π1
1 counterexamples—

that is, to find some reason to consider them not as theorems of ordinary

mathematics or otherwise outside the scope of reverse mathematical analysis.

The second is to retreat to a more modest thesis about what the standard

view—that reversals track set existence principle—is intended to accomplish.

I shall deal with both views in turn.

While WO(ωω) is not provable in RCA0, it is provable in RCA0 + Σ0
2-IND.

Similarly, WO(ωω
ω

) is provable in RCA0 + Σ0
3-IND. Sometimes strengthened

induction principles are even needed in order to prove results that look like

more straightforwardly reverse mathematical results. Neeman [2011] demon-

strates a case where Σ1
1 induction is needed in order to show that Jullien’s

indecomposability theorem implies the weak Σ1
1 choice scheme.

One response to these counterexamples might be to increase the strength

of the induction principle used in the base theory. This is not unprecedented:

in Friedman’s first paper on reverse mathematics, the systems studied included
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the full induction scheme [Friedman 1975]. Even so, this manoeuvre appears

highly ad hoc, since we seem to be stipulating that the amount of induction

present in the base theory can be increased arbitrarily in order to wipe out the

counterexamples to the standard view. In doing so we are failing to accom-

modate the data, namely that important theorems of ordinary mathematics

are equivalent to such wellordering statements. We have no principled reason

to pretend that they do not exist—on the contrary, a good theory of rever-

sals should explain these equivalences, just as much as it should explain the

equivalences of theorems of analysis or descriptive set theory.

Here is one attempt to justify this strategy; there may be others. The

standard natural numbers ω satisfy induction for the full language of second

order arithmetic, as well as for any higher-type extension. Restricting attention

to ω-models can be thought of as the ideal limit of increasing the amount of

induction available in the base theory. Moreover, ω-logic is complete for Π1
1

sentences: if a wellordering statement of the type under discussion is true, then

it is true in all ω-models.

Building such a presupposition into our base theory is essentially the move

suggested by Shore [2010, 2013]. I discuss Shore’s programme at length in

chapter 5. This brute force approach simply rules out the counterexamples,

but the price to be paid seems very high: again, what reason do we have to

think that these equivalences are not worth considering?

These facts motivate the following view of the situation. Arithmetical state-

ments, concerned with the properties of the natural numbers—that is, with

finite objects—are decided by taking this ideal limit of induction principles,

namely adopting ω-logic. Most equivalences in reverse mathematics are left

untouched by this suggestion, since their primary concern is not finite objects

but countably infinite ones: real numbers, countable fields, codes for Borel sets

or complete separable metric spaces. The Π1
2 theorems that form the bulk of

statements studied in reverse mathematics are simply of a different kind to

statements that are either explicitly finitary or are negative statements about

infinite objects.

While wellordering statements like WO(ωω) are exceptional, that they can’t

be accommodated within the explanatory framework of the standard view is

understandable given that they differ significantly from the other statements

studied in reverse mathematics. The correct response to them is therefore mod-

esty. Although not all mathematical theorems studied in reverse mathematics

have this form, the study of Π1
n≥2 statements concerning countable or count-

ably representable objects forms the core of the subject, and the view that
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reversals track closure conditions is best understood as an attempt to explain

the significance of that core.

2.8 Conclusion

There is a tension between the two primary desiderata of any account of the sig-

nificance of reversals. The first is that the account should have something to say

about all mathematically natural subsystems of second order arithmetic, rather

than unaccountably falling silent when faced with something unexpected. This

is precisely the demand placed by the comprehensiveness condition (2). The

second is that it should answer the significance question by providing an ex-

planation of what the existence of a reversal tells us. It seems reasonable to

expect that any answer to the significance question will be nontrivial (1), and

that it will be uniform: the explanations it provides will be unified (3).

Unfortunately, if we aim to provide an account that gives us a substantial

answer to the significance question, and from which we can infer a considerable

amount about the significance of reversals to particular systems, then on the

evidence so far, we will find any number of counterexamples that undermine

the generality of our account. This is precisely the problem faced by SEC and

its variants.

If, on the other hand, we aim to provide a thoroughly general account of

the significance of reversals and thus satisfy the comprehensiveness condition,

we are unlikely to be able to provide a substantial or informative account of

the significance of individual reversals. Walking the line between triviality and

noncomprehensiveness is thus a difficult task.

The view that reversals track closure conditions attempts to strike a bal-

ance closer to triviality than noncomprehensiveness. This allows the view to

accommodate the most central part of the discipline, namely the study of math-

ematically natural Π1
2 theorems. Although such a general account does not, by

itself, offer substantial explanations of the significance of particular reversals,

it does at least offer a framework within which more fine-grained theorising can

be done. The explanatory power offered by SEC can be partially assimilated by

acknowledging that some closure conditions are comprehension schemes, and

that comprehension schemes are a family of principles with distinctive qualities,

such that their necessary use in the proof of an ordinary mathematical theorem

will allow distinctive kinds of explanation. However, even this highly general

account has to cope with a class of exceptional principles, namely wellordering

statements equivalent to theorems whose proof relies on transfinite induction

45



2. Set existence and closure

along recursive ordinals of varying heights.

The revised view therefore differs from the standard view in two essential

respects. Firstly, it steps back from the claim that the significance of all the

equivalences proved in reverse mathematics lies in the set existence principles

thereby shown to be necessary to their proof. Secondly, it offers a specific char-

acterisation of set existence principles, as closure conditions on the powerset of

the natural numbers.

On this view, the significance of core results in reverse mathematics is that

they show the crucial theorems for diverse areas of ordinary mathematics re-

quire that P(N) satisfy particular closure conditions. These closure conditions

can be captured by natural axioms drawn from logic (namely from recursion

theory, proof theory and model theory). In spite of the diversity of the ordinary

mathematical theorems studied in reverse mathematics, the closure conditions

involved are few, and have clear relationships to one another—for the most

part they are linearly ordered by proof-theoretic strength.

An individual reversal demonstrates the closure condition required to sup-

port a given part of ordinary mathematics, and in some sense picks out an in-

trinsic feature of a theorem, namely the resources required to prove it, whether

that be compactness or transfinite recursion. This feature is a proof-invariant

property: every proof of the theorem in question must at some point make use

of this property, although it may appear in different guises (as weak König’s

lemma or as the Heine/Borel theorem, for example). In the next chapter, we

shall explore the extent to which these seemingly robust proof-invariant proper-

ties are dependent upon representational assumptions made in the metatheory.
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Coding and content

This chapter draws on joint research with Sam Sanders. We are currently

preparing a paper covering similar ground, but the following was written by me

alone. My coauthor is therefore not responsible for any mistakes herein, and

may disagree with the conclusions I reach.

3.1 Semantic aspects of reverse mathematics

The standard view in the field of reverse mathematics is that equivalences

between theorems of ordinary mathematics and subsystems of second order

arithmetic demonstrate the set existence principles necessary for proving those

theorems. A realist reading of this view is that these equivalences demonstrate

that if we accept the truth of some theorem of ordinary mathematics, we must

also accept the truth of the underlying set existence principle necessary to

prove it. As we saw in chapter 2, there are many details that must be supplied

in order to turn the broad outlines of the standard view into a compelling

metaphysical and epistemological account, but its basic scaffolding has much

to recommend it.

When one turns from these epistemological and metaphysical concerns to

semantic ones, this scaffolding starts to look more rickety. Much of the burden

of the standard view is borne by the claim that the formalisations of ordinary

mathematical theorems in subsystems of second order arithmetic are faithful,

in the sense that they formally capture the mathematical content of statements

of ordinary mathematics. It is this faithfulness that undergirds the significance

of reversals, since it is required in order to justify claims like “Arithmetical

comprehension is necessary in order to prove the Bolzano/Weierstraß theorem”.

Mathematics is full of a certain kind of loose talk which can, on first hear-

ing, be philosophically confusing. When a reverse mathematician says that

Brouwer’s fixed point theorem is equivalent to weak König’s lemma, we should
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understand this claim as paraphrasing something like the following: the sen-

tence ϕ in the language of second order arithmetic is a faithful formalisation

of Brouwer’s fixed point theorem, and ϕ is provably equivalent over RCA0 to

weak König’s lemma. My intent in this chapter is not to pick holes in the

entirely understandable use of such paraphrases in reverse mathematics, but to

address the more substantive issue of whether these formalisations of ordinary

mathematical theorems are indeed faithful.

Formalisations can be understood as a kind of translation, from ordinary

mathematical language into the formal language in question. Some aspects

of this translation appear unproblematic: logical notions such as conjunction,

implication and quantification translate readily enough, just so long as they are

interpreted in the same way (typically classically) in both settings. Similarly,

propositions concerning natural numbers and sets of natural numbers have a

direct interpretation in second order arithmetic. As we shall see, a broad range

of further kinds of statements—for example concerning relations R ⊆ Nk for

any k ∈ N—can be translated very directly into this setting.

Second order arithmetic is expressively constrained, insofar as its basic vo-

cabulary is arithmetic and it only permits quantification over natural numbers

and sets of natural numbers. These restrictions mean that the language of

second order arithmetic does not include quantification over, for example, fi-

nite sequences σ ∈ N<N or functions f : N → N. Nevertheless such objects

are easily and faithfully coded in second order arithmetic. For the former, we

represent finite sequences of natural numbers as single natural numbers, using

Gödel’s β function. For the latter, an n-ary function f : Nn → N is repre-

sented by a set Xf of natural numbers, each of which represents a sequence

σ = 〈x1, . . . , xn, xn+1〉 such that for any x1, . . . , xn there is only one y such

that 〈x1, . . . , xn, y〉 ∈ X.

Such representations of mathematical objects can be more or less direct.

Those just discussed are straightforward, at least in part because the encoding

type (natural numbers, sets of natural numbers) has the same cardinality as

the encoded type (finite sequences of natural numbers, functions from Nk to

N). Nevertheless, the faithfulness of these representations must be guaranteed

if we are to take seriously the view that statements concerning these codes are

faithful formalisations of the ordinary mathematical statements concerning the

encoded objects.

These guarantees are given by representation theorems, which state that

the relevant mathematical properties of the encoded objects are preserved by

encoding them in the formal system in question. Such theorems typically have
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the form

∀Xτ [ϕ(X) ⇔ ∃yρ ψ(y) ]

where Xτ means that the object X is of type τ , and yρ means that y is of type

ρ. The property ϕ(X) is the represented property, while the property ψ(y) is

the representing property. Similarly we say that X is the represented object and

y is the representing object or representation. If X has the represented property

then there is an object y that represents it, and if there is a representation y

with the right property, then the represented object X has the represented

property. Moreover, y usually encodes enough information about X that X

can be constructed from it.

An important case is that of continuous functions between uncountable

spaces such as the reals, which are central to analysis, but due to cardinality

constraints cannot be represented directly in second order arithmetic. As we

shall see shortly, their representation by codes is much less direct than the

examples just mentioned.

Due to their role as one of the basic objects of analysis, continuous func-

tions have been much studied not only in the classical setting, but also in the

realms of constructive, computable and nonstandard analysis. We shall start

from the classical Weierstraß ε-δ definition of continuity for real-valued func-

tions; a textbook exposition is given by Rudin [1976, p. 85]. This definition

can be straightforwardly generalised to functions between metric spaces rather

than just from reals to reals, but all of the central issues already arise in this

fundamental case. For simplicity of exposition we shall therefore, in the main,

stick with the reals.

Given X ⊆ R and p ∈ X, a function f : X → R is continuous on X at p if

for every ε > 0 there exists a δ > 0 such that for every x ∈ X,

|x− p| < δ ⇒ |f(x)− f(p)| < ε.

If f is continuous at every y ∈ X, f is continuous on X.

Since it lacks third-order quantifiers, continuous real-valued functions can-

not be represented directly in second order arithmetic as functions on the reals.

The representation of real-valued functions instead leans on the representation

of the real numbers in second order arithmetic as the completion of the rational

numbers Q. Individual real numbers are represented by Cauchy sequences of

rational numbers with a fixed rate of convergence: 〈qk|k ∈ N〉 such that for all

k, i ∈ N, |qk − qk+i| ≤ 2−k.

Definition 3.1.1 (continuous functions). Let Â and B̂ be complete separable

metric spaces and let φ : Â→ B̂ be a continuous function between them. Then
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a code for φ is a set of quintuples Φ ⊆ N×A×Q+ ×B ×Q+ which obeys the

following conditions:

1. if ((a, r)Φ(b, s) and (a, r)Φ(b′, s′)) then d(b, b′) ≤ s+ s′;

2. if ((a, r)Φ(b, s) and (a′, r′) < (a, r)) then (a′, r′)Φ(b, s);

3. if ((a, r)Φ(b, s) and (b, s) < (b′, s′)) then (a, r)Φ(b′, s′)

where (p, q)Φ(r, s) means ∃n((n, p, q, r, s) ∈ Φ); (a, r) < (a′, r′) means d(a, a′)+

r′ < r; and d is the metric on Â.

So Â could be, for example, a closed interval and B̂ the reals with their

usual metric. After presenting this definition, Simpson [2009, p. 85] gives the

following gloss on it:

Recall . . . that B(a, r) denotes the basic open ball centered at a

with radius r. Intuitively, (a, r)Φ(b, s) is a piece of information to

the effect that φ(x) ∈ the closure of B(b, s) whenever x ∈ B(a, r),

provided φ(x) is defined.

Even with this intuitive picture in hand, this is a complex definition, and

hard to parse on first reading. But by encoding continuous functions in this

way one can overcome the expressive limitations of RCA0 and formalise the

central analytical notion of continuity, albeit in a highly indirect manner.

3.2 Enriched definitions and constructivity

One way to understand the hierarchy of mathematically natural systems ex-

tending RCA0 is as standard yardsticks that allow us to measure the degree

of nonconstructiveness of the theorems that are provably equivalent to them,

although such an understanding does require that we interpret nonconstruc-

tiveness in a particular way, namely in terms of uncomputability: with mathe-

matics in RCA0 understood as corresponding to computable mathematics, the

systems that extend RCA0 correspond to principles asserting the existence of

different classes of uncomputable sets. So the separable Hahn/Banach theorem

is nonconstructive because it implies the existence of uncomputable sets—but

the Bolzano/Weierstraß theorem is more nonconstructive, because it implies

the existence of the Turing jump of every set, which is a stronger principle

than weak König’s lemma.

Simpson [2009, p. 32] argues that constructive mathematicians respond to

such nonconstructive theorems by conceptual change: enriching definitions in

50



3.2. Enriched definitions and constructivity

such a way that the formerly classical theorems stated in terms of these notions

become constructively provable.

The typical constructivist response to a nonconstructive mathe-

matical theorem is to modify the theorem by adding hypotheses

or “extra data”. In contrast, our approach in [Simpson 2009] is

to analyze the provability of mathematical theorems as they stand,

passing to stronger subsystems of Z2 if necessary.

In Bishop’s constructive analysis, the classical definition of a continuous func-

tion from the preceding section is supplemented by an additional hypothesis:

that every such function is associated with a modulus of uniform continuity.

A real-valued function f on a compact interval X is continuous, in Bishop’s

sense, if there exists a modulus of continuity ωf such that for every ε > 0 the

value ωf (ε) > 0, and

|x− y| < ωf (ε) ⇒ |f(x)− f(y)| < ε

for every x, y ∈ X [Bishop and Bridges 1985, p. 38].

The existence of (codes for) such moduli of uniform continuity is not in

general provable in RCA0, although many important special cases are provable;

Simpson [2009, pp. 136–7] remarks that

it is interesting to note that “any continuous function [from Rk

into R] which arises in practice” can be proved in RCA0 to have a

modulus of uniform continuity on any closed bounded subset of its

domain.

In other words, RCA0 suffices in the typical cases that mathematicians are in-

terested in. Simpson [2009, p. 137] goes on to say (original emphasis preserved)

that

This situation has prompted some authors, for example Bishop and

Bridges [1985, p. 38], to build a modulus of uniform continuity into

their definitions of continuous function. Such a procedure may be

appropriate for Bishop since his goal is to replace ordinary math-

ematical theorems by their “constructive” counterparts. However

. . . our goal is quite different. Namely, we seek to draw out the set

existence assumptions which are implicit in the ordinary mathemat-

ical theorems as they stand. . . . Thus Bishop’s procedure would

not be appropriate for us.
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Simpson, then, is very clear that one criterion for the faithfulness of a

formalisation of an ordinary mathematical theorem is the absence of such en-

richments. This seems right: if a formalisation is to capture the content of a

mathematical statement then supplementing its hypotheses with “extra data”

such as a modulus of uniform continuity appears to change the meaning of the

statement. Nevertheless it is important to be clear on two points, the first of

which is that an apparent enrichment is not always a genuine enrichment: a

statement that employs an enriched notion may turn out to be equivalent to

an alternative formalisation that does not.

Moreover, such semantic change when formalising ordinary mathematical

statements is not confined to constructivists; reverse mathematics itself con-

tains many examples of this phenomenon, simply because, as in the construc-

tivist case, the theory in which one typically works (RCA0) is proof-theoretically

and expressively weak. Consider the notion of a structure in model theory. This

is usually understood as a set (the domain), together with a collection of con-

stants drawn from the domain, and a collection of functions and relations on

the domain. For each such structure M there exists a uniquely defined sat-

isfaction relation M |= ϕ, which is defined for all formulas ϕ in the language

of M . Second order arithmetic can only handle countable structures, but the

key metatheoretic results for first-order logic show that this is not a serious

restriction, as any consistent theory in a countable language has a countable

model. However, if we formalise the notion of a countable structure in a direct

way that closely matches the usual model-theoretic definition, then the base

theory RCA0 is too weak to prove most model-theoretic results, because it can-

not prove that for each countable structure M , the satisfaction relation for M

exists. To prove this statement we actually need a system known as ACA+
0 ,

which extends the axioms of ACA0 with the principle that the Turing jump

operator can be iterated along ω.

Worse still, many model-theoretic statements, including such central results

as the compactness and completeness theorems, turn out to be weaker than

ACA0. In order to do reverse mathematics one needs to work over a base

theory that cannot prove the theorems whose strength is being proved, such as

RCA0, so one needs to replace the standard definition of a countable structure

with one that can be better handled in the base theory. As it turns out, the

way to do this is to build the entire elementary diagram—the set of first-order

sentences true in that structure—into the definition of a countable structure

(for details see §II.8 of Simpson [2009]). It is using this enriched definition of a

countable structure that results such as the completeness theorem are proved
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to be equivalent to WKL0 over RCA0. We may reasonably ask whether the

elementary diagram of a structure is more essential to a structure than the

modulus of uniform continuity is to a continuous function.

3.3 Higher order reverse mathematics

In order to make these concerns precise, and gauge the strength of the repre-

sentation theorems necessary to vindicate the coding choices made in reverse

mathematics, Ulrich Kohlenbach introduced higher types to reverse mathemat-

ics [Kohlenbach 2002, 2005]. Kohlenbach’s system includes all finite types, and

thus allows statements about higher-type objects—such as functions on the

reals—to be formalised directly. This makes it possible to compare different

representational approaches, and understand the higher-order commitments

implicit in the use of reverse mathematical coding devices.

In order to do this, we must briefly outline the essentials of Kohlenbach’s

system, which is described in full in §2 of Kohlenbach [2002], with a briefer

but more accessible presentation in §2 of Kohlenbach [2005]. The set T of

finite types contains a type 0, and for every pair of types ρ and τ , it also

contains the type ρ→ τ of functions from ρ to τ . The type 0 is the type of the

natural numbers N, while the type 1 is the type of functions f : N → N, so it

roughly corresponds to the sets of natural numbers in the usual formulation of

second order arithmetic.19 The underlying logic for theories in this language

is classical, many-sorted logic. Where necessary in the rest of this chapter, a

variable’s type will be made clear by a superscript, so “xτ” denotes a variable

of type τ .

With different types in play, it is often crucial to be able to form sets of

elements of different types. To this end a family of choice schemas can be

formulated in higher order mathematics. The schema of quantifier-free choice

for the types ρ, τ is given by

QF-ACρ,τ ≡ (∀xρ∃yτϕ(x, y))→ (∃F ρ→τ∀xρϕ(x, Fx))

and the full schema of quantifier-free choice for all types is given by

QF-AC ≡
⋃

ρ,τ∈T

QF-ACρ,τ

where T is the set of all finite types.

19A slightly closer analogue is the second order functional calculus used in Grzegorczyk

et al. [1958] and other papers from that period.
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One of the fundamental theories formulated in Kohlenbach’s system is

known as E-PRAω, and it is effectively an analogue of primitive recursive arith-

metic PRA, but expressed in the language of all finite types. By extending

E-PRAω with the axiom of quantifier free choice for the type 0, QF-AC0,0,

one obtains the system RCAω0 . This system proves Σ0
1 induction and ∆0

1 com-

prehension, the defining axioms of RCA0. Since it is formulated in a language

with functions rather than sets, RCAω0 is not strictly speaking an extension of

RCA0. However, by identifying sets with their characteristic functions one can

interpret RCA0 as a subsystem of RCA2
0, the second order fragment of RCAω0 .

RCAω0 is conservative over RCA2
0 for sentences in the second order fragment

of the language, and thus in an obvious sense also over RCA0 [Kohlenbach 2005,

proposition 3.1]. As a corollary of this result, the usual hierarchy of subsystems

of second order arithmetic can all be formulated in this setting, and the usual

relationships between them hold. RCAω0 can also be extended with the axiom

schema of full induction, yielding the stronger theory RCAω. This is, in effect,

a higher-type version of RCA, i.e. RCA0 plus the full induction scheme (1.13).

Before we move on to the substantial results obtained within this framework,

let us briefly pause to consider two set existence axioms related to subsystems

of second order arithmetic. The first is (E1), which asserts the existence of a

functional E1 that allows one to determine whether or not two reals x, y ∈ NN

are equal.20 The system RCAω0 + (E1) implies and is conservative over ACA0

[Hunter 2008, theorem 2.5]. The second is (E2), which is just (E1) but for

functions on the reals. The system RCAω0 + (E2) implies and is conservative

over Π1
∞-CA0 [Hunter 2008, corollary 2.6], i.e. full second order arithmetic Z2.

3.4 The strength of representations

The formal counterparts of ordinary mathematical theorems concerning contin-

uous functions generally turn out, when formalised in second order arithmetic,

to be either provable in RCA0 (such as the intermediate value theorem), or

equivalent to one of ACA0 (the Ascoli lemma) or WKL0 (Brouwer’s fixed point

theorem). Since continuous real-valued functions cannot be directly represented

within second-order arithmetic, these results rely on the representation of such

functions by codes. Following Kohlenbach [2002] and Sanders [2015] we refer

to these codes as RM-codes.

In Kohlenbach’s higher order reverse mathematics, continuous functions are

directly representable as type-2 functionals. For functionals Φ : X → Y where

20Kohlenbach [2005] calls this (∃2).
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X and Y are Polish spaces (complete separable metric spaces), Φ is continuous

in the usual ε-δ sense just in case it is sequentially continuous. This result is

provable in RCAω0 plus a stronger choice principle, QF-AC0,1, which is needed to

prove the implication from sequential continuity to ε-δ continuity [Kohlenbach

2002, proposition 4.1 and remark 4.2].

Continuity in the reverse mathematics sense is another matter entirely.

Given an RM-code g, RCAω0 + QF-AC0,1 proves that the direct representa-

tion of the continuous function coded by g exists. The converse—that every

directly represented continuous function has an RM-code—is not provable in

RCAω0 +QF-AC0,1. Adding the full induction schema and the full quantifier-free

choice schema does not help: E-PAω+QF-AC does not prove the representation

theorem either. This already appears problematic, since one of the apparent

epistemic advantages of using a weak base theory like RCA0 is that one can

demonstrate from a vantage point with limited theoretical commitments that a

given axiom is necessary to the proof of some theorem. But from Kohlenbach’s

results we can see that the theoretical resources available to RCA0, even when

its expressive resources are enhanced in order to directly represent the higher-

order objects that can only be indirectly coded in second order arithmetic, are

not sufficient to prove the faithfulness of the representation in question, that

is, that every continuous function has an RM-code. Moreover, as the follow-

ing theorem demonstrates, the representational assumption implicit in reverse

mathematical practice yields an enrichment of the direct representation by a

modulus of pointwise continuity.

Theorem 3.4.1 (Kohlenbach). Let Φ2 be a continuous functional from the

Baire space to N (both with the usual metrics). Then the following are pairwise

equivalent over RCAω0 :

1. There exists an RM-code of Φ;

2. There exists a continuous modulus of pointwise continuity for Φ.

The upshot is that the reverse mathematics definition in RCA0 of contin-

uous functions implies, in the higher order setting, a constructive enrichment

of the direct representation of continuous functions in the sense of section 3.2.

Sanders [2015] extends Kohlenbach’s work to show that the reverse mathemat-

ics definition of continuity gives rise to a nonstandard enrichment of continuity,

and that the nonstandard continuous type-2 functionals are precisely those with

RM-codes.

In the above theorem the range of the continuous function was the natural

numbers, but more typically we are interested in functions on spaces like the
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Baire space, the Cantor space, the reals and the like. Using a surprising decid-

ability result of Dag Normann, Kohlenbach proved that if we restrict ourselves

to a particular class of spaces—namely the Cantor space and, more generally,

compact Polish spaces—then the standard reverse mathematical coding of con-

tinuous functions between these spaces is faithful.

More precisely, WKLω0 proves that the restriction of every (direct represen-

tation of a) continuous functional Φ1→1 to the Cantor space (or any compact

Polish space) has an RM-code [Kohlenbach 2002, proposition 4.10]. This ap-

pears to salvage the reverse mathematics of continuous functions for WKL0:

since the higher-order variant of WKL0 proves that for compact Polish spaces,

continuous functions have RM-codes, this representation theorem becomes just

that—a theorem—when working with WKL0. We therefore end up with a rather

mixed report on the faithfulness or otherwise of the reverse mathematical rep-

resentation of continuous functions. When working in RCAω0 the representation

is indeed enriched, but for important spaces working in WKL0 is sufficient to

guarantee the existence of RM-codes for continuous functions.

There are some important open questions still to be answered. The first con-

cerns the provable existence of RM-codes. We know that arithmetical compre-

hension in the higher-type setting suffices to prove that every continuous func-

tion between Polish spaces has an RM-code: does WKLω, i.e. E-PAω + WKL,

suffice to prove this result? If it does, this would seem to show that the repre-

sentation of every continuous function between Polish spaces by RM-codes is

faithful, relative to WKL. Secondly, can we weaken the theory needed to prove

the existence of RM-codes for continuous functions on the Cantor space from

WKLω0 ? Here the obvious target is WWKL0, which is a mathematically natu-

ral system intermediate in strength between RCA0 and WKL0. Amongst other

statements involving continuity, WWKL0 is equivalent to the statement that

every continuous bounded function is Riemann integrable (where “continuous”

is understood in the usual reverse mathematics sense).

If one thing is clear from this investigation, it is that the faithfulness of a

representation is relative to the principles one accepts in one’s metatheory. For

the reverse mathematics of statements involving continuous functions, the re-

verse mathematician appears committed to at least having weak König’s lemma

available in her metatheory, and perhaps even a stronger theory that validates

the existence of RM-codes for all continuous functions between complete sepa-

rable metric (Polish) spaces.

We now turn to a different case study, namely the reverse mathematics of

general topology, where the subtle representational problems discussed above
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become glaring. Despite its importance in mathematics since its inception in

the early 20th century, general topology must count as one of the fruits of the

set-theoretic revolution, and thus seems to lie outside “ordinary mathematics”

as Simpson [2009] conceives of it. Its set-theoretic roots certainly engender

difficulty in the usual reverse mathematics setting, because given a set of points

X, a topological space on X is a higher-type object: a set of subsets of X.

Typically one wants to study topologies at least on the Baire space ωω, if not

higher spaces as well, but to study topological spaces in second order arithmetic

they must be countably representable.

Mummert and Simpson [2005], in a paper initiating the reverse mathematics

of general topology, study a certain kind of topological space (MF spaces)

with a countable basis that generates the topology, and thus containing all the

information necessary to represent the space. Separable spaces—those with a

countable subset that is dense in the space—are another example of topological

spaces that are countably representable. It is therefore at least possible to code

certain topological spaces in second order arithmetic, although the base theory

typically needs to be strengthened beyond RCA0.

From the perspective afforded us by Kohlenbach’s work it is natural to

ask how strong the representational assumptions that underpin this use of

countable bases are. This question has been answered by James Hunter, who

shows that they are very strong indeed [Hunter 2008, proposition 2.15].

Theorem 3.4.2 (Hunter). The existence of a type-3 set of type-2 objects with

cardinality ≤ i1 is equivalent to (E2).

The axiom (E2), first mentioned at the end of the preceding section, is

extremely strong: it implies the second order comprehension scheme Π1
∞-CA.

In other words, the higher order framework reveals that the existence of a

countable representation of a topological space with cardinality 2ℵ0 or greater is

sufficient to imply full second order arithmetic Z2. As Hunter also proves, the

statement that a separable topological space exists is also equivalent to (E2),

this time over the base theory RCAω0 + (E1).

This means that, save in one crucial respect, the situation for topology mir-

rors that for continuous functions. In both cases a representational assump-

tion is made in the metatheory, and in both cases that assumption outstrips

the strength of the higher type counterpart of the object theory, namely the

base theory RCA0. However, in the case of continuous functions the represen-

tational assumption does not seem too problematic, except possibly for the

reverse mathematics of systems weaker than WKL0. This is not the case for

topology. A framework in which to study the reverse mathematics of general
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topology should allow us to address uncountable spaces, including countably

representable ones. But Hunter’s work shows that simply assuming the exis-

tence of countable codes for higher-order topological spaces implies full second

order comprehension Π1
∞-CA.

This dwarfs the strength of systems typically studied in reverse mathemat-

ics. For example, the main result of Mummert and Simpson [2005] is that

the statement “Every countably based regular MF space is homeomorphic to

a complete separable metric space” is equivalent to Π1
2-CA0. This was first

time that a theorem of “core mathematics” had been shown to be equivalent

to Π1
2-CA0, and it was striking because the proof-theoretic strength of this the-

orem is substantially greater than the bulk of results in reverse mathematics.21

Even so, it is still far weaker than full second order arithmetic Z2.

Employing a representational assumption that is much stronger than the

theorems that actually use that representation seems prima facie problematic.

Articulating precisely why it is problematic is more complex. We should first

note the platonistic attitude running through reverse mathematical practice:

when working in a weak theory, stronger principles are typically assumed to

be true and thus available as an extension where necessary. A reversal, for

example, might be true but unprovable in RCA0—at which point it is entirely

legitimate to strengthen one’s base theory in order to prove it. Reverse mathe-

matics is an exercise in “How little can we get away with?”, but in the metathe-

ory anything goes, and the full range of set-theoretic truths and techniques are

available.

In particular, the representation theorems that allow one to work with

countable objects in place of uncountable metric spaces and the like are true in

this set-theoretic backdrop. As a result, whilst being aware that coding intro-

duces some subtle issues, reverse mathematicians are quite comfortable using

these intricate representational devices. This attitude is problematic insofar

as we take reverse mathematical results to be demonstrating something pro-

found about theorems of ordinary mathematics, namely the principles required

to prove them. A provable equivalence (over a weak base theory) between an

axiom system S and a formalisation τ of an ordinary mathematical theorem T

is significant because it shows that the axioms of S are necessary in order to

21Mummert and Simpson [2005] do not clarify why they use the term “core mathemat-

ics” rather than “ordinary mathematics”, but as Simpson [2009] explicitly excludes general

topology from ordinary, non-set-theoretic mathematics, it could be that they wish to suggest

that while it may not be an ordinary mathematical statement, the theorem they study is

from mathematics proper rather than having a metamathematical or explicitly set-theoretic

character.
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prove T . This is not supposed to be merely a fact about the formal statement

τ , but about the ordinary mathematical theorem T .

If the resources involved in the formalisation of T as τ are greater than

those of (an appropriate conservative extension of) the base theory, then it

would seem that the base theory is not adequate to express T , since it cannot

prove the faithfulness of the notions involved. This requirement is quite strict:

the standard reverse mathematics representation of continuous functions would

not meet it, since RCAω0 does not prove the existence of an RM-code for every

continuous function. We can draw a less strict variation from Kohlenbach’s

argument that since the representation theorem for continuous functions is

provable in WKLω0 , the representation is adequate for the reverse mathematics

of WKL0 (but possibly not WWKL0). The variation is as follows: given a the-

orem T of ordinary mathematics, formalised as a statement τ in the language

of second order arithmetic, the faithfulness of every mathematical notion con-

tained in T must be provable in an appropriate conservative extension of the

system RCA0 + τ (or more generally, for a base theory B, B + τ).

In most cases where such a τ is not provable in the base theory, it has

turned out to be equivalent to one of the Big Five extending RCA0, so the

relevant representation theorems would in practice usually have to be proved

in the higher type version of one of WKL0, ACA0, ATR0, or Π1
1-CA0. While

this allows us to salvage the reverse mathematics of continuous functions for

systems T ⊇WKL0, it does have a nasty side-effect, namely inducing a further

relativity in the justifiability of representation theorems. We can no longer

take the faithfulness of the representation in RCA0 of some higher-type math-

ematical notion to be guaranteed by the same principles that are accepted in

the base theory, and thus proceed to determining the proof-theoretic strength

of theorems involving that notion without further inquiries as to the status

of the relevant representation theorem. Instead, we must determine that the

representation theorem is sanctioned by some appropriate conservative exten-

sion of each system proved equivalent to a theorem involving that notion. This

leaves some existing results, such as equivalences between statements about

continuous functions and WWKL0, in rather murky water.

One way to read these results is as a vindication of Feferman’s explicit

mathematics [Feferman 1975a, 1977]: we should formalise ordinary mathemat-

ics in expressively adequate theories of higher types, and then reduce these

theories to more basic ones, in the spirit of the relativised Hilbert programme

[Feferman 1988]. Since we must directly formalise higher-type objects anyway,

in order to determine that we are not smuggling strong axioms in through the
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back door, we might do better to go via Feferman’s route, rather than trying

to squeeze higher-type objects into second order arithmetic even when, like

topological spaces, they clearly don’t fit.

We close with an aside. Downey, Hirschfeldt, Lempp, and Solomon [2002]

study the reverse mathematics of the Nielsen–Schreier theorem that every sub-

group of a free group is free. They show that if one formalises subgroups as sets,

then the Nielsen–Schreier theorem is provable in RCA0, but if one formalises

subgroups as being given by generators, then it is equivalent to ACA0. Here,

the representations are quite direct, so the issue is not whether the represen-

tations themselves are problematic in the same sense as those for continuous

functions or topological spaces, but rather what the correct formalisation of

the concept of a subgroup is—or, indeed, whether there is such a thing.
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4.1 Reverse mathematics and foundations

The main philosophical role attributed to reverse mathematics in the current

literature is what I shall call foundational analysis. This application has been

strongly promoted by Stephen Simpson, born out of his view (stated amongst

other places in his [2009] and [2010]) that there is a correspondence between

subsystems of second order arithmetic and foundational programmes such as

Weyl’s predicativism and Hilbert’s finitistic reductionism. By providing a hi-

erarchy of comparable systems, and proving the equivalence of theorems of or-

dinary mathematics to these systems, reverse mathematics demonstrates what

resources a particular theorem requires, and what a given system cannot prove.

In other words, when committing to a foundational system reverse mathematics

lets us know precisely what we are giving up. It also tells us when a proponent

of such a system employs mathematical resources that she is not entitled to, as

they go beyond what her preferred foundation can prove. By applying reverse

mathematics to questions of this sort we can determine the degree to which

ordinary mathematics can be recovered by proponents of these foundational

theories, hence my use of the term foundational analysis.

The following example should clarify the notion of foundational analysis.

Suppose Sarah is a predicativist in the tradition of Weyl. She believes that

the natural numbers form a completed, infinite totality, and that sets which

can be defined arithmetically—i.e. with quantifiers ranging over the natural

numbers, but not over sets of them—also exist. This would lead her to accept

the arithmetical comprehension scheme, and thus the subsystem of second order

arithmetic ACA0. She might even accept a somewhat stronger system; this

possibility is explored in §4.4. But given Sarah’s predicativist outlook she

would resist the thoroughly impredicative axiom scheme of Π1
1 comprehension,

and its associated subsystem of second order arithmetic Π1
1-CA0.
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Now suppose that her colleague Rebecca disagrees with Sarah’s predica-

tivism and wants to persuade her that it is an inappropriate foundation for

mathematics. She might argue as follows: While Sarah accepts ACA0 and per-

haps even some stronger subsystems of second order arithmetic, she will not

accept Π1
1-CA0. On the other hand, since Sarah wants her predicativist outlook

to provide a foundation for all of mathematics, it would be strange if she failed

to account for important theorems of ordinary mathematics—say, in abelian

group theory. Consider the statement “Every countable abelian group can be

expressed as a direct sum of a divisible group and a reduced group”. The group

theorist in the street, Rebecca argues, believes this to be true. Sarah might

tentatively agree, whereupon Rebecca would point out the following theorem

from reverse mathematics: assuming that every countable abelian group is a

direct sum of a divisible group and a reduced group, one can prove (in RCA0,

which Sarah clearly accepts) the Π1
1 comprehension scheme.

It appears that Sarah has some explaining to do. Either she must abandon

her predicativism, or she must push back against the naturalistic line Rebecca is

urging upon her. Neither course appears terribly palatable, while the fact that

this theorem is drawn not from set theory or some other area of mathematics

whose ontological commitments might be thought extravagant could be taken

as evidence that the problem here is a pressing one. The contentious state-

ment is an ordinary theorem from a core area of mathematics, which reverse

mathematical analysis shows us to have substantial proof-theoretic strength.

Foundational analysis does not offer a knockdown argument against pred-

icativism, or indeed any foundational view with limited theoretical resources.

Rather, it makes arguments like the dispute between Rebecca and Sarah not

just possible but precise: we can see, within a common framework (namely the

base theory RCA0, and the coding required to represent ordinary mathemat-

ical concepts in it), just where the boundaries of these foundational systems

lie. As a rational agent, Sarah surely formed her foundational views in the full

understanding that they require her to give up on any mathematics that view

deems to be without foundation. The decision to give up on or stick with her

foundation is not one to be taken lightly, and it is one that should be made

by considering the relevant facts. These facts can, in large part, be supplied

by foundational analysis, which allows Sarah and the rest of us to see precisely

what is at stake.

For foundational analysis to play a useful philosophical role in mediating

between disputants with different foundational stances, it must be possible to

carry out this analysis on ground which is common between the disputants.
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Such common ground has several aspects; amongst them we can distinguish

commonality of language; commonality of premises; and commonality of rules

of inference. So while a predicativist and a platonist like Sarah and Rebecca

might disagree about whether Π1
1 comprehension is a valid axiom, they both

accept the laws of classical logic and at least the axioms of RCA0, and thus

both will agree that the theorem above is not predicatively provable. In other

words, foundational analysis makes it clear where the fault lines lie, and the

presence of common ground makes the conclusion available not just to those

who accept stronger axioms or rules of inference, but those who are committed

to a more limited foundational framework and will only accept mathematical

conclusions derived from that framework.

Notice that Sarah already accepted that Π1
1 comprehension was not a pred-

icative principle, otherwise she would not have been able to deduce that the

theorem about abelian groups was not predicatively provable. In accepting

this Sarah goes beyond what her foundation can formally prove. If she accepts

ACA0 and no more, then she is not in a position to separate Π1
1-CA0 from ACA0.

This is due to Gödel’s second incompleteness theorem: since

Con(ACA0)⇒ ACA0 6` Con(ACA0)

is provable in a weak system (RCA0 is more than sufficient), as is

Π1
1-CA0 ` Con(ACA0),

we have that

Con(ACA0)⇒ ACA0 ( Π1
1-CA0,

i.e. Π1
1-CA0 is a proper extension of ACA0. We cannot eliminate the assump-

tion of the consistency of ACA0, since if ACA0 is inconsistent then it proves

everything that Π1
1-CA0 does, which is to say every sentence in the language of

second order arithmetic.

The upshot of this is the fact that Π1
1 comprehension is not a predicative

principle cannot be grasped on the basis of her acceptance of Sarah’s predica-

tive formal theory, no matter how strong it is, since we can re-run the above

argument for any system S such that ACA0 ⊆ S ( Π1
1-CA0. For Sarah or

any predicativist, the impredicativity of Π1
1 comprehension must therefore be

justified by some other means. One candidate justification might be Sarah’s

acceptance of the soundness of the predicative formal theory ACA0, or a pred-

icative extension thereof. This is an informal, metatheoretic premise along the

lines of: The axioms of S are true, and the rules of inference of classical logic

preserve truth, so all the consequences of S are also true, and therefore S does

not prove any contradiction, and is consistent.
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Alternatively, the impredicativity of Π1
1-CA0 might itself be taken as a basic

(albeit presumably defeasible) belief. That is to say, the defining axiom of

Π1
1 comprehension appears, on the face of it, to be impredicative: it employs

quantification over all sets of natural numbers, and appears to do so in an

essential way. In the absence of evidence to the contrary, Sarah should assume

that Π1
1-CA0 is an impredicative axiom system, and thus unacceptable on the

basis of her predicativist stance.

Before studying the connections between foundational programmes and sub-

systems of second order arithmetic in more detail, let us briefly consider the

ramifications of the previous chapter’s findings for foundational analysis. We

saw that the faithfulness of formalisations of ordinary mathematical notions de-

pends upon representation theorems proved in the metatheory, and that these

theorems can in fact be quite strong (in terms of proof-theoretic strength).

If one wishes to make an argument of the kind that Rebecca does, then one

tacitly relies on the faithfulness of the formalisations employed in the reverse

mathematics of the particular statements one deploys as examples of ordinary,

true mathematical theorems that are unprovable in a given foundational frame-

work. If the relevant representational assumptions are strong enough that they

would not be provable in the foundational framework in question, this seems

to throw a spanner in the works.

For example, if Rebecca wanted to invoke theorems of topology in her at-

tempt to persuade Sarah that predicativism is inadequate to mathematical

practice, and thus mathematical truth, then her argument would appear to

rely on a suppressed premise, namely the faithfulness of the representation

of topologies with countable bases. Since that premise entails full second or-

der arithmetic, Sarah could reasonably respond that the so-called theorems

of topology are not, from her predicative perspective, anything of the sort:

they are simply formal statements in the language of second order arithmetic

that are not predicatively provable. To identify them with particular theorems

of topology requires that they be faithful translations, and the proof of that

faithfulness requires theoretical resources that she is on principle not willing to

commit to.

Foundational analysis therefore provides us with a good reason to be strict

when it comes to our demand that representation theorems be provable in (an

appropriate conservative extension of) the base theory: we thereby ensure that

the reverse mathematical results can be read as intended, i.e. as demonstrating

the mathematical resources necessary to prove a particular theorem of ordinary

mathematics. This allows the kind of naturalistic argument given by Rebecca to
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be understood by the proponent of a given foundation within their theoretical

framework. In the absence of this understanding, such an argument would

appear (to Sarah, say) to be a non-sequitur.

4.2 Computable and constructive analysis

Simpson [2009, p. 31–2] writes that the reconstruction of ordinary mathematics

within the formal system RCA0 bears a resemblance to Bishop’s constructive

analysis [Bishop and Bridges 1985]. One point of agreement is that RCA0 is

compatible with the assertion that every total function f : N→ N is recursive;

indeed, it is true in REC, the minimum ω-model of RCA0. The connection

between Bishop-style constructivism and RCA0 is discussed in more detail by

Friedman et al. [1983], who point out another area of compatibility. RCA0 is, by

a result of Parsons [1970], Π0
2 conservative over primitive recursive arithmetic.

Consequently, any Π0
2 theorem of RCA0 is constructively valid, since PRA is

generally accepted as a constructive system.

Thus far we have only discussed points of compatibility, but there are ways

in which work in RCA0 draws directly on constructive analysis. Similar con-

structions and proofs are possible, such as the proof of the Weierstraß ap-

proximation theorem in RCA0, which mimics a typical constructive proof from

Bishop and Bridges [1985]. Interestingly, constructive mathematics is also a

rich source of recursive counterexamples that have inspired classical proofs of

equivalences over RCA0. Brown and Simpson [1986]’s proof that the separable

Hahn/Banach theorem implies weak König’s lemma (over RCA0) is based on a

recursive counterexample originating with Bishop, while Simpson [1984]’s proof

that Peano’s existence theorem also implies weak König’s lemma over RCA0 is

based on a recursive counterexample of Aberth [1980].

Despite these similarities, the clash of logics between the two systems makes

the prospect of carrying out foundational analysis for Bishop’s constructive

analysis in RCA0 untenable, as the following argument should make clear. Con-

structivists reject the unrestricted use of the law of the excluded middle (LEM),

and consequently do not consider the classical entailment relation to preserve

justification. Even if some set of axioms T are deemed constructively accept-

able, a theorem ϕ may be rejected if it is proved from those axioms by classical

rather than constructive means. Results in traditional reverse mathematics,

which assumes full classical logic including unrestricted use of LEM, will there-

fore not always be accepted as meaningful by constructivists, depending on

whether the proof in question employs these techniques. One example is the
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intermediate value theorem, which is provable in RCA0 but not constructively

valid in Bishop’s sense, as it is equivalent to the constructively invalid lesser

limited principle of omniscience (LLPO).

The suggestion that Simpson makes in later writing such as [2010] that

the foundational programme best identified with work in RCA0 is in fact com-

putable analysis seems closer to the mark. Computable analysis is a fusion

of computability theory, scientific computing, and real analysis, which aims at

providing a rigorous foundation for computing solutions to mathematical ques-

tions in scientific fields such as physics where phenomena are modelled in terms

of continuous functions. In computable analysis, “an algorithm is required for

any entity employed [and thus] definition always goes with evaluation” [Aberth

1980, pp. 1–2]. The standard template for developing computable analysis runs

as follows: one selects a model of computation on the natural numbers, and

based on this choice, one develops a notion of computation on the reals, allow-

ing one to create a framework for solving problems in computable analysis.

The approach of Aberth [1980] and Pour-El and Richards [1988] is based

on classical recursion theory, and they permit unrestricted use of classical rea-

soning such as LEM. In this way their approach is similar to the development

of classical analysis in RCA0, and their underlying motivations are similar.22

Pour-El and Richards [1988, p. 4] write that

Our objective is to delineate the class of computable processes

within the larger class of all processes. In this, our viewpoint is

analogous to that of the complex analyst, who regards the analytic

functions as a special case of the class of all functions, but regards

all functions as existing mathematical objects.

Computable analysis thus differs from real analysis in that its subject matter

is restricted to a subset of the real numbers, namely the computable numbers,

and the functions, sequences and so on over this subset are restricted to the

algorithmically definable ones. Aberth [1980, p. 4] concludes that

[C]omputable analysis may be thought of as a subanalysis of real

analysis. The two analyses differ but do not contradict each other.

Reverse mathematics aims to determine the non-computable set existence ax-

ioms necessary in order to prove theorems of ordinary mathematics, including

analysis. We can therefore think of computable analysis as the other side of

the coin, showing what can be done computably. While computable analysis

22Weihrauch [2000] proposes a somewhat different approach to computable analysis (the

Type-2 Theory of Effectivity), parts of which somewhat resemble constructive analysis.
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tends to deal more directly with analytical objects, rather than being restricted

to natural numbers and sets thereof, the underlying principle of restricting at-

tention to computably-definable objects is the same, as is the compatibility

with (if not advocacy of) the assertion that every total function f : N → N is

recursive. The degree to which RCA0 is a faithful formalisation of computable

analysis could therefore benefit from studying whether computable analysis can

be formalised directly in a conservative higher-type system such as Kohlenbach

[2005]’s.

All this being said, computable analysis is not a foundational programme

in the same sense that constructive analysis is. It seems right to say that

reverse mathematical results show what parts of classical analysis employ non-

computable resources, and thus cannot be proved in computable analysis, but

researchers in computable analysis are not committed to the kind of claims that

constructivists are, namely that all of mathematics should be refounded on a

computable basis. Nevertheless, reverse mathematics does seem to have a job to

do in this context, regardless of whether we consider it a properly foundational

one, although in terms of the computational foundations of analysis for physics,

constraints based on feasibility seem more likely to have an impact than those

based on uncomputability.

4.3 Partial realisations of Hilbert’s programme

Hilbert’s programme was to reduce infinitary mathematics to finitary math-

ematics. He viewed finitism as a secure foundation for mathematics, free of

the paradoxes which arose from seemingly natural assumptions and normal

mathematical reasoning about infinite collections. This reduction was to be

accomplished by giving a finitary consistency proof for an infinitary system

which, following Simpson [1988a], we can identify with Z2. Hilbert thought

that employing infinitary methods in mathematics, such as assuming the exis-

tence of infinite collections, could be viewed simply as a way to supplement our

finitistic theories with ideal statements, analogous to ideal elements in alge-

bra. Ideal statements are thus intended to be eliminable, at least in principle:

the purpose of Hilbert’s desired consistency proof was to show that we can

use infinitary mathematics to get finitary results, and that those results are

finitistically acceptable.

Gödel’s second incompleteness theorem shows that there can be no such

consistency proof, and thus that Hilbert’s programme cannot be carried out

in its entirety. Many authors even consider Gödel’s theorems to have shown
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that Hilbert’s programme is entirely bankrupt. While it certainly blocks the

full realisation of the enterprise, Simpson [1988a] argues that the possibility

of partial realisations remains. But since the consistency proof Hilbert sought

is out of reach, the latter-day finitistic reductionist must find other ways to

demonstrate that their uses of ideal statements are in principle eliminable.

Instead of trying to prove the consistency of the infinitary system directly,

finitistic reductions of infinitary systems can be carried out in a relativised

way, following the template laid down by Kreisel [1968]. A comprehensive

survey can be found in Feferman [1988], which I paraphrase here.

Suppose we have two theories T1 (in a language L1) and T2 (in L2), both

of which contain primitive recursive arithmetic. Suppose also that we have a

primitive recursive set of formulae Φ ⊆ FmlL1
∩FmlL2

containing every closed

equation t1 = t2. A proof-theoretic reduction of T1 to T2 which conserves Φ is

a partial recursive function f which, given any proof from the axioms of T1 of

a sentence ϕ ∈ Φ, produces a proof of ϕ from the axioms of T2. If the existence

of f can be proved in T2, it then follows that T2 proves (a formalisation of)

the following conditional statement: “If T2 is consistent then T1 is consistent.”

For if T1 proves that 0 = 1, then f will transform any proof of 0 = 1 in T1 into

a proof of 0 = 1 in T2.

Such a relative consistency proof will constitute a finitary reduction if the

existence of f can be proved in a suitable finitary system. Clearly this is a

requirement for the finitistic reductionist. Otherwise the result has a circular

character unacceptable within a reductionist programme: it would amount to

using ideal methods to show that ideal methods are acceptable. This is also

why Hilbert wanted a finitary consistency proof for infinitary mathematics,

since an infinitary proof would fail to appropriately reduce infinitary mathe-

matics to finitary mathematics. Similarly, an infinitary proof of a conservativity

theorem is insufficient to demonstrate the reducibility of an infinitary system

to a finitary one. As Sieg [1985, p. 34] puts it, “[a conservativity theorem of

this kind], if established by elementary means [i.e. finitary methods], is of ob-

vious foundational significance as it gives a direct finitist justification for parts

of mathematical practice.”

If Hilbert had succeeded in providing a finitary consistency proof for in-

finitary mathematics then there would have been no need to mark out the

boundary between finitary and infinitary methods with any precision, as the

proof would have made use of methods which were clearly finitary in nature.

Simpson’s route to a partial realisation of Hilbert’s programme requires that

we formalise our conception of a finitary system, in order to obtain the conser-
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vation results that demonstrate that certain infinitary systems are finitistically

reducible and partially realise Hilbert’s programme. The formal system which

Simpson selects is primitive recursive arithmetic or PRA. Tait [1981] argues

that PRA is the correct formalisation of finitary mathematical reasoning, going

so far as to say (p. 525) that

We shall see that there is no question but that [primitive recursive]

reasoning is finitist. The issue of our thesis will be whether all

modes of finitist reasoning are primitive recursive.

Tait concludes that we can identify primitive recursive reasoning with finitist

reasoning; this is now commonly known in the literature as Tait’s thesis. Simp-

son [1988a, p. 352] concurs with Tait’s thesis, writing that

There seems to be a certain naturalness about PRA which sup-

ports Tait’s conclusion. PRA is certainly finitistic and “logic-free”,

yet sufficiently powerful to accommodate all elementary reasoning

about natural numbers and manipulations of finite strings of sym-

bols. PRA seems to embody just that part of mathematics which

remains if we excise all infinitistic concepts and modes of reasoning.

For my purposes here I am going to accept Tait’s identification of

finitism with PRA.

The rest of Simpson’s argument rests squarely on this identification of finitism

with PRA: he does not offer any new considerations in support of Tait’s thesis,

instead simply accepting it and proceeding accordingly.

Fixing PRA as the finitary system to which infinitary systems must be

reduced to, the next question is which infinitary systems are finitistically re-

ducible to PRA. Simpson’s answer is WKL0, the system obtained by adding

weak König’s lemma (“Every infinite subtree of 2<N has an infinite path”) to

RCA0. Friedman [1976, unpublished] used model-theoretic techniques to show

that WKL0 is Π0
2 conservative over PRA; the proof can be found in Simpson

[2009, §IX.3]. Subsequently Sieg [1985] gave a primitive recursive proof trans-

formation which, given a proof of a Π0
2 theorem ϕ in WKL0, generates a proof

of ϕ in PRA. Unlike Friedman’s result this proof-theoretic derivation of the

conservativity theorem is itself finitary in the appropriate way: it is provable

within a finitary system and thus allows the reduction to go through. As the

complexity of consistency statements is Π0
1, if WKL0 proves the consistency of

PRA then so does PRA itself. By Gödel’s second incompleteness theorem PRA

would therefore be inconsistent. From this Simpson concludes that WKL0 is

finitistically reducible to PRA, and so the fragment of mathematical reasoning
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which one can carry out in WKL0 is finitarily acceptable.

There are several aspects of Simpson’s view that we might criticise. The

first is his reliance on Tait’s thesis, which has taken fire from many quarters.

Schirn and Niebergall [2003] claim (p. 66) that “the identification of finitist

mathematics with PRA is questionable, if not untenable”. Broadly speaking

such complaints fall into two camps: that PRA is too weak to encompass all

of finitistic reasoning, and that it is too strong. Those in the former camp

include Kreisel [1960], who concluded that finitary provability coincides with

provability in PA. Detlefsen [1979] has argued that adding instances of the

restricted ω-rule is also finitistically acceptable, although Detlefsen’s position

has in turn been criticised, for example by Ignjatović [1994]. Two proposals that

fall into the latter camp are made by Ganea [2010]. From the broad spread

of conclusions reached it is clear that what finitistic reasoning consists in is

disputed, to say the least. Tait’s arguments provide a robust defence of the

thesis that primitive recursive arithmetic demarcates finitistic mathematical

reasoning, and on this basis Simpson has presented a compelling foundational

picture that should be taken seriously on its own merits.

This response also seems appropriate to the second criticism we shall con-

sider, due to Sieg [1990], which amounts to the claim that Simpson’s under-

standing of Hilbert is a misreading.

Simpson considers the finitist reductionist program . . . as Hilbert’s

program. This is inaccurate. Hilbert did not propose to redo all of

mathematics with only finitist principles, but rather to justify—via

finitist consistency proofs—the use of strong classical theories suf-

ficient for the direct formalization of mathematical practice. If this

particular reductionist program should be adorned with a name,

then it seems appropriate to attach Kronecker’s to it. Recall that

on Hilbert’s view the principles accepted by Kronecker coincided

essentially with finitist ones, and Kronecker certainly insisted on

using just those. Indeed, it would be highly interesting and quite

possibly mathematically rewarding, if parts of Kronecker’s work

were to be analyzed within restricted axiomatic frameworks.

“A partial realisation of Kronecker’s programme” does not have quite the same

ring to it, but while issues of textual interpretation are important, they should

not distract us from other salient issues, namely whether Simpson’s finitistic

reductionism is a substantial foundational programme worthy of proof-theoretic

analysis. The answer must be that it is. The preceding criticisms do cast some

doubt on the claim that WKL0 constitutes a partial realisation of Hilbert’s
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programme, but nevertheless, the reverse mathematics of WKL0 clearly make

a foundational contribution, insofar as they demonstrate what fragment of

ordinary mathematics can be recovered within this framework, whatever we

choose to call it.

However, even if we take Tait’s thesis for granted, Simpson’s argument does

not in any way pick out WKL0 as the unique formal counterpart of finitistic

reductionism. Brown and Simpson [1993] present a system they call WKL+
0 ,

which extends WKL0 with a strong formal version (BCT) of the Baire Category

Theorem. They prove, using a forcing argument, that WKL+
0 is Π1

1 conservative

over RCA0, and therefore by a result of Parsons [1970], Π0
2 conservative over

PRA. Since (BCT) is a scheme involving formulas of arbitrary complexity,

Sieg’s methods are inapplicable. However, by formalising the forcing argument

in RCA0, Avigad [1996] effectivizes the conservativity theorem and thus demon-

strates that WKL+
0 is also finitistically reducible. So while WKL0 is, modulo

Tait’s thesis, a finitarily reducible system, it is but one partial realisation of

Hilbert’s programme. WKL+
0 is demonstrably another, and indeed a stronger

one, since it satisfies the same criteria of finitistic reducibility whilst properly

extending WKL0.

One might think that this undermines Simpson’s claim that the Big Five

subsystems of second order arithmetic correspond to existing foundational pro-

grammes, but this is not a fair reading of Simpson’s position: he does not claim

that these systems are the unique formal correlates of these foundational ap-

proaches (henceforth, we shall call this the uniqueness claim). It is consistent

with his position that there are a variety of infinitary yet finitistically reducible

systems. This being said, the stress he places on these particular correspon-

dences makes it reasonable to suppose that he may, in fact, accept some form

of the uniqueness claim.

Moreover, the striking results of reverse mathematics do give rise to the ex-

pectation that there is something to the uniqueness claim. The vast majority

of ordinary mathematical theorems studied to date have been found to either

be provable in the base theory RCA0, or to be equivalent to one or other of

the Big Five. Simpson [2010, p. 115] estimates that “several hundreds [of the-

orems] at least” have been thus classified. This seems to constitute evidence

of a quasi-empirical form that these systems are natural stopping points. If

we provisionally accept some form of Simpson’s claim that each of these sys-

tems can be justified on the basis of an antecedently understood foundational

programme, and also that each system cannot be justified on the basis of the

foundational principles that justify the system below it in the ordering (for
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example, ACA0 can be justified by predicativism but not Simpson’s partial re-

alisation of Hilbert’s programme), then it would be reasonable to expect all of

these systems to be the strongest ones justifiable on the basis of those foun-

dational programmes. It is this maximality expectation that gives rise to the

uniqueness claim.

As we have seen, however, WKL0 does not appear to be the strongest system

justified on the basis of Simpson’s finitistic reductionism, and as we shall see in

the rest of this section, this expectation is also violated elsewhere. The moral

seems to be that proof-theoretically natural closure points do not always align

cleanly with justificatory closure points—or if they do, then we have not yet

identified the sources of justification of these axiom systems in a sufficiently

fine-grained way.

4.4 Predicativism and predicative reductionism

ACA0 has a close connection to predicativism of the form associated with Weyl

and Feferman. Feferman [2005, p. 599] writes that “Weyl accepted that each

subset of N of the form { n ∈ N | A(n) } exists, where A is an arithmetical

formula (i.e., one that contains no quantifiers ranging over sets, only over nat-

ural numbers).” This aligns perfectly with the arithmetical comprehension

scheme, which precisely asserts that those sets exist which are definable by

arithmetical formulas. Indeed, when Feferman [2005, p. 610] discusses positive

developments in the mathematical reach of predicativity, he writes that “The

primarily relevant system for the positive work on predicative mathematics in

[reverse mathematics] is ACA0”.

Predicativity given the natural numbers can be extended beyond ACA0 in

a natural and obvious way, by allowing comprehension principles in which the

quantifiers range over sets which have already been determined to exist on

predicative grounds. This process can be iterated through ω-many stages and

beyond, giving rise to the ramified analytical hierarchy of sets of natural num-

bers. Corresponding systems of ramified analysis RAα are then defined in

terms of comprehension principles which express the closure conditions that

apply at each stage. The following rough sketch is merely intended to give a

sense of how predicative reductionism extends the version of predicativism asso-

ciated with ACA0 to reach the greater proof-theoretic strength of ATR0. Read-

ers interested in understanding the programme in more detail are directed to

Feferman [2005] who explains its historical and technical development in some

detail. Predicative reductionism and reverse mathematics are also discussed by
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Simpson [1985, pp. 152–156].

A formal system T is predicatively reducible if it is proof-theoretically re-

ducible to one of the systems RAα such that α < Γ0, the Feferman–Schütte

ordinal (where proof-theoretic reducibility is defined as in §4.3). ACA0 is

predicatively reducible in just this sense. If, on the other hand, T is proof-

theoretically reducible to the union of all the predicative systems of ramified

analysis RAΓ0 =
⋃
α<Γ0

RAα then we say that T is locally predicatively re-

ducible. By a theorem of Friedman, McAloon, and Simpson [1982], ATR0 is

locally predicatively reducible. Moreover, ATR0 is Π1
1 conservative over RAΓ0

.

So not only does ATR0 agree with the predicative part of ramified analysis

about arithmetical truth, it also proves the same theorems about the arith-

metical properties of all real numbers.

The formal system ATR0 consists of ACA0 plus a scheme of arithmetical

transfinite recursion. This states that the arithmetical operations can be it-

erated, starting from any set X ⊆ N, along any countable wellordering. For

a full formal definition see Simpson [2009, §V.2]. ATR0 can therefore prove

the consistency of ACA0, by iterating the Turing jump operator ω-many times

and constructing the code for a countable ω-model of ACA0. As the reverse

mathematics programme has shown, there are many theorems not provable

within ACA0 that ATR0 does prove, so predicative reductionism is a signifi-

cant strengthening of the predicative outlook, albeit one still operating within

the framework that informed the acceptance of ACA0 as a predicative system.

Moreover, ATR0 sits at the outer limits of predicativity, since its proof-theoretic

ordinal is Γ0—the “ordinal of predicativity”, as determined by Feferman [1964]

and Schütte [1964, 1965].

4.5 Impredicative systems

The foundational role of the impredicative system Π1
1-CA0 is less clear cut.

By results of Feferman [1970], Π1
1-CA0 can be proof-theoretically reduced to

the theory of iterated inductive definitions ID<ω. This system can in turn be

reduced to an intuitionistic version of itself, IDi<ω(O), by an extension of the

double-negation translation. However, this is a property which Π1
1-CA0 has

in common with other impredicative subsystems of analysis such as Σ1
2-AC,

which by Friedman [1970] is reducible to the theory ID<ε0 . Full details of these

reductions appear in Feferman and Sieg [1981].

We might reasonably wonder what is achieved by such reductions. The

allegedly constructive character of these intuitionistic theories of iterated in-
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ductive definitions must be demonstrated, in order for us to conclude that these

reductions put impredicative subsystems of analysis on a more secure epistemic

footing. Sieg [1984] argues for this conclusion as follows (pp. 187–8):

The theories are based on intuitionistic logic; the objects in their

intended models are obtained by construction; the definition- and

proof-principles which are admitted in the theories follow that con-

struction. The objects, i.e., the constructive ordinals, are further-

more of a very special character. They reflect their buildup ac-

cording to the generating clauses of their definition in a direct and

locally effective way. Viewing the clauses as inference rules, the

constructive ordinals are infinitary derivations and show that they

fall under their definition. All of this indicates that the theories for

ordinals are constructively justified and thus provide a constructive

foundation for the classical theories which are reducible to them.

Sieg continues (p. 188) by saying that

From a broader perspective, I see these investigations as part of an

attempt to take the concept of iteration or inductive definition as

basic for analyzing that section of mathematics which lends itself

to an arithmetic, constructive treatment.

Such constructive foundations for subsystems of analysis form an important

part of the generalised Hilbert programme, as articulated in Sieg [1988]. They

do not, however, in any way satisfy the uniqueness claim discussed in §4.3.

In particular they offer no defence of the particular importance of Π1
1-CA0.

Thus while reverse mathematics has much to say about how much ordinary

mathematics can be developed in this system, and thus how much can be

constructively justified on the basis of the particular considerations that lead

to the acceptance of the principles of the system IDi<ω(O), there does not seem

to be any principled reason lurking in the background as to why we should stop

here if we can possibly go on. In other words, the connection that Simpson

[2009, p. 43] makes between Π1
1-CA0 and the work of Buchholz, Feferman,

Pohlers, and Sieg [1981] on iterated inductive definitions is real enough, but it

is more subtle than the simple idea presented in the first section of this chapter,

namely that in proving reversals we thereby show what mathematics can and

cannot be developed in the formal counterparts of particular philosoophically-

motivated foundations for mathematics.

Moreover, reverse mathematical results have less direct relevance for foun-

dations which can accommodate impredicative principles such as Π1
1 compre-
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hension, partly because most ordinary mathematical theorems studied to date

have turned out to be proof-theoretically weaker. That a theorem τ is provable

in Π1
1-CA0 is of course important from the point of view of recapturing ordi-

nary mathematics on the basis of constructive principles, but while interesting,

any reversal to Π1
1 comprehension is more important from the perspective of

weaker foundational perspectives, since the equivalence demonstrates the theo-

rem’s unprovability in their framework. What would be truly interesting from

the viewpoint of constructively-justifiable impredicative analysis would be re-

versals from ordinary mathematical theorems to much stronger impredicative

subsystems of analysis that are yet to be placed on a constructive footing.23

23One value that reversals do have for the generalised Hilbert programme is letting us

know that the work was worth it. For example, the equivalence of a substantial fragment of

descriptive set theory to Π1
1 comprehension means that reducing Π1

1-CA0 to a theory based

on constructively acceptable principles allows us to place this part of mathematics on a sound

footing, and that we would not have been able to do so otherwise.
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5
Computational reverse

mathematics

5.1 Shore’s programme

However much it may borrow from other areas of mathematical logic, reverse

mathematics is ultimately a proof-theoretic endeavour. Given a theorem of

ordinary mathematics, the reverse mathematician seeks to find a subsystem of

Z2 that is equivalent over a weak base theory to the theorem concerned. She

thereby finds the proof-theoretic strength of the theorem. Rooted in niceties of

formal systems such as axiom schemes and complexity hierarchies of formulae,

this approach may seem awkward and even unnatural to mathematicians in

more mainstream fields. As number theorist Barry Mazur explains [Mazur

2008, p. 224—emphasis in original],

when it comes to a crisis of rigorous argument, the open secret is

that, for the most part, mathematicians who are not focussed on

the architecture of formal systems per se, mathematicians who are

consumers rather than providers, somehow achieve a sense of utterly

firm conviction in their mathematical doings, without actually going

through the exercise of translating their particular argumentation

into a brand-name formal system.

Turning to the specific case of the strength of mathematical theorems, Richard

Shore contends that most mathematicians do not approach this task from the

viewpoint of reverse mathematics [Shore 2010, p. 381]:

While they may concern themselves with (or attempt to avoid) the

axiom of choice or transfinite recursion, they certainly do not think

about (nor care), for example, how much induction is used in any

particular proof.
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Shore goes on to argue that adopting a computational approach to reverse

mathematics would solve this exegetical problem, providing a natural way for

mathematicians to understand the motivations and results of reverse mathe-

matics. Whether algorithmic and construction-oriented explanations are more

natural to the main body of mathematicians is an interesting question, but

not one I shall attend to here. In labelling his framework as a strain of reverse

mathematics, Shore invites comparisons with the traditional variety. The major

task ahead of us is to examine whether Shore’s programme offers a comparable

or superior way of achieving one of the foundational goals set out by Simpson:

carrying out foundational analysis.

Instead of formal provability, the fundamental concept of Shore’s frame-

work is computable entailment. As well as motivating computational reverse

mathematics by examining the close links between computational principles

and arithmetic, and looking at how tools from recursion theory are already

employed by working reverse mathematicians, this section explains Shore’s en-

tailment relation. It quickly becomes clear that it collapses many distinctions

present in traditional reverse mathematics, giving a rather different picture of

the relationships between theorems of ordinary mathematics and the compu-

tational and combinatorial principles required to prove them.

A computational account of reverse mathematics can be considered plau-

sible only if mathematical principles have computational content. At least in

the case of arithmetic it is clear that this is true, as demonstrated by the pio-

neering results of Gödel, Church, Turing, Post, Kleene and Rosser in the 1930s.

Recursion theory holds an important status in reverse mathematics, both in

virtue of its relationship to subsystems of reverse mathematics and because

it provides a battery of tools for proving reverse mathematical results. It is

these principles and techniques which Shore appeals to when constructing his

account of computational reverse mathematics.

The major subsystems of second order arithmetic correspond to classical

principles from recursion theory. As well as shedding light on the model theory

of these systems, these connections give us the basis for Shore’s computational

reverse mathematics. The foundation of these correspondences lies in the no-

tion of an ω-model. An ω-model is one whose first order part consists of the

standard natural numbers ω = { 0, 1, 2, . . . }, and whose arithmetical vocabu-

lary is interpreted in the standard way, with a second order part S ⊆ P(ω). ω-

models are thus uniquely distinguished by their second order parts, and hence-

forth we shall be sloppy and identify ω-models with their second order parts

wherever no ambiguity is possible.

78



5.1. Shore’s programme

The sets of natural numbers lying in S determine which systems the ω-model

satisfies. Since subsystems of second order arithmetic are principally charac-

terised by their comprehension schemes, the more definable sets S contains the

stronger the systems it can satisfy. If S is closed under ∆0
1 definability then

it will satisfy RCA0. The following fact demonstrates the relationship between

definability and relative computability, and will prove useful in what follows.

Definition 5.1.1. Let X,Y ⊆ N. The recursive join of X and Y is given by

(5.1) X ⊕ Y = { 2x | x ∈ X } ∪ { 2y + 1 | y ∈ Y } .

Definition 5.1.2. Let C be a nonempty subset of P(ω) closed under Turing

reducibility and recursive joins. Then we call C a Turing ideal.

Fact 5.1.3. An ω-model M is a model of RCA0 iff its second order part is a

Turing ideal.

Similar closure conditions apply to the ω-models of the other main sub-

systems of second order arithmetic. ω-models of ACA0 are Turing ideals, since

RCA0 is a subtheory of ACA0, but these models are also closed under the Turing

jump operator, while those of Π1
1-CA0 are closed under the hyperjump. Closure

under recursion-theoretic relations also characterises the ω-models of the inter-

mediate systems WKL0 and ATR0. The ω-models of WKL0 are related to the

Jockush–Soare low basis theorem [Jockusch and Soare 1972]. The ω-models of

ATR0 are closed under hyperarithmetic reducibility, although the story here is

more subtle, since the class of hyperarithmetic sets HYP is so closed, but is

not an ω-model of ATR0 (although it is the intersection of all such models); see

§VIII.4 and §VIII.6 of Simpson [2009]. The Big Five thus correspond closely

to a hierarchy of computational principles of increasing power.

Computability theory also provides important tools for the practising re-

verse mathematician. A common application is using Turing ideals to prove

nonimplications between statements or theories. They form a natural class

of models where the Turing reducibility relation behaves as we expect, so it

is a good setting in which to find countermodels. The procedure is partic-

ularly straightforward when the sentences in question are Π1
2; Shore [2010,

p. 384] gives a detailed explanation. Since many important mathematical the-

orems such as the Ascoli lemma and Ramsey’s theorem are Π1
2, the technique

is widely applicable. For instance, to show that weak König’s lemma does not

imply arithmetical comprehension, we note that by the Jockush–Soare low ba-

sis theorem there is an ω-model M of WKL0 in which all sets are low. Such a

model will not contain 0′, and thus M 6|= ACA0, since ACA0 proves the existence

of the Turing jump.
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Shore proposes taking this use of computability theory a step further and

basing a new approach to reverse mathematical analysis on recursion theory,

rather than proof theory. In place of the usual relations employed in reverse

mathematics—provability and logical equivalence over a base theory—he offers

the notions of computable entailment and computable equivalence.

Definition 5.1.4. Let C be a Turing ideal, and let ϕ be a sentence of second

order arithmetic. C computably satisfies ϕ if ϕ is true in the ω-model whose

second order part consists of C. A sentence ψ computably entails ϕ, ψ |=c ϕ, if

every Turing ideal C satisfying ψ also satisfies ϕ. Two sentences ψ and ϕ are

computably equivalent, ψ ≡c ϕ, if each computably entails the other. These

definitions extend to theories in the standard way.

Computable entailment removes any need for an explicit base theory: this

role is instead played by the restriction of the class of models under consider-

ation to ω-models whose second order parts are Turing ideals. As fact 5.1.3

shows, the ω-models of RCA0 are precisely those models, so the base theory

has not disappeared but merely manifested itself in a different way. Further-

more, failures of computable entailment are stronger than failures of logical

implication over RCA0, since the former entails the latter, but not vice versa.

Conversely, a proof of computable entailment is weaker than logical implication

over RCA0. Considered as a variant of reverse mathematics, Shore’s approach

in his [2010] and [2013] is revisionary: computable entailment and equivalence

are not coextensional with their proof-theoretic counterparts. It is not merely

an alternative way of conceiving of the role and significance of traditional re-

verse mathematics, but a substantially different project, albeit a closely related

one.

Shore does not offer computational reverse mathematics as a way to carry

out foundational analysis; he has very different methodological goals in mind.

But given its advantages over the classical way of doing business, namely that

we can use recursion-theoretic machinery directly without too much concern

over niceties such as the amount of induction available, it seems reasonable to

wonder whether his framework can contribute to the analysis of foundational

programmes in the same way as classical reverse mathematics.

In §2.7 we discussed some considerations in favour of Shore’s approach.24

On the pragmatic side, restricting the amount of induction available in the

base theory is occasionally problematic, since some equivalences cannot be

proved without increasing the strength of the induction axiom used. Restricting

24The objections raised there are relevant to a different set of issues to those considered

here, so we will not go over them again.
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our attention to ω-models is the ideal limit of this process, as the standard

natural numbers satisfy the induction scheme when formulated in second order

arithmetic as well as all higher types. By fixing the first-order part of the model

we remove many complications and make reverse mathematics a more purely

computability-theoretic endeavour.

Moreover, the core subject matter of reverse mathematics consists in or-

dinary mathematical statements about actually infinite objects such as real

numbers, complete separable metric spaces and countable groups and fields.

These statements are invariably Π1
2 (and, rarely, Π1

3) rather than arithmeti-

cal. By fixing the first order part of the model and allowing the second or-

der part to vary across different Turing ideals, we remove any indeterminacy

about the arithmetical world from our framework and focus on the central is-

sue, namely the equivalences between ordinary mathematical statements and

computability-theoretic closure conditions on P(N).

Shore’s proposal that we restrict our attention to ω-models of RCA0 is, by

the Henkin/Orey completeness theorem for ω-logic [Orey 1956, Henkin 1954],

extensionally equivalent to adding the ω-rule to RCA0. The ω-rule is an infini-

tary rule of inference that, from the infinite set of premises ϕ(0), ϕ(1), . . . , ϕ(n),

. . . , one may infer the universal statement ∀nϕ(n). The infinitary “proofs” in

this system are represented by wellfounded, countably branching trees. The

classical ω-rule is, by a result of Lopez-Escobar [1967] and Takahashi [1970],

extensionally equivalent in second order arithmetic to the restricted ω-rule

introduced by Shoenfield [1959]. Second order arithmetic with the ω-rule is

complete for Π1
1 sentences, but not for Σ1

1 sentences [Rosser 1937].

5.2 Computable entailment and justification

Computable entailment collapses many distinctions present under the usual

classical entailment relation, and thus the equivalence classes obtained under

the computable equivalence relation are very different from those given by

provable equivalence over RCA0. For instance, the standard natural numbers

satisfy the induction scheme for all predicates in the language of second or-

der arithmetic. As a result, systems with only restricted induction and their

counterparts with the full induction scheme are computably equivalent. The

presence of full induction is indicated by the absence of the ‘0’ subscript in the

system’s name: RCA is RCA0 but with full induction, WKL is WKL0 with full

induction, and so on. In all cases, the system with full induction has precisely

the same ω-models as its counterpart with restricted induction, and thus they
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are computably equivalent.

This presents a problem given the connections between the Big Five and

existing philosophically-motivated programmes in the foundations of mathe-

matics. At least in some cases these subsystems are formalisations in second

order arithmetic of those foundational programmes, but it is by no means ob-

vious that the same is true for other axiom systems which are computably

equivalent to them. ACA0 is a predicative system, but the mere fact that ACA

is computably equivalent to it should not compel us to believe that ACA is

similarly predicatively acceptable.

Another way to understand this point is by considering that a key property

of any entailment relation is preserving justification: if we are justified in ac-

cepting the antecedent then we are justified in accepting the consequent. For

computational reverse mathematics to be capable of the foundational analysis

outlined earlier, we must show that computable entailment preserves justifica-

tion just as deductive entailment does. Crucially, we must show that given any

foundational programme that we wish to analyse by proving reverse mathe-

matical results, those results will be justified on the conception of justification

internal to the foundational programme itself. If computable entailment fails to

satisfy this requirement then proponents of such foundational programmes will

be unmoved by any arguments drawn from computational reverse mathematics,

as they will reject the underlying assumption necessary to proving the results

involved. In other words, the crux of the issue is not whether computable

entailment preserves justification on some particular account of the epistemol-

ogy of mathematics, but whether it respects the justificatory structure of the

foundational programmes being analysed.

In the previous chapter we examined Simpson [1988a]’s claim that the Π0
2

conservativity of WKL0 over primitive recursive arithmetic means that the for-

mer, infinitary system can be reduced to the latter, finitary one, and that

this constitutes a partial realisation of Hilbert’s programme. There are rea-

sons to question whether Simpson’s interpretation of Hilbert is correct, and

plenty of debate to be had over whether this is in fact a good foundation for

mathematics. Nevertheless, the finitistic reductionism that Simpson proposes

is nonetheless a foundational enterprise worthy of consideration. While it has

its detractors, Tait’s thesis that finitistic provability is to be identified with

provability in PRA has also gained widespread support, and the other crucial

element of Simpson’s argument—the finitistic reduction of WKL0 to PRA—is

not in doubt. For these reasons we should not attach undue importance to the

name of Hilbert, but instead assess Simpson’s approach on its own merits.
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One part of such an assessment consists of the use of reverse mathematical

methods to determine the parts of ordinary mathematics that can be devel-

oped within this foundational framework. Our system of reverse mathematics

should therefore be able to analyse Simpson’s finitistic reductionism, and as

argued above, that analysis should respect its justificatory structure. With

this concern in mind, the crucial question is whether or not Simpson’s partial

realisation of Hilbert’s programme can be extended from WKL0 to include all

systems T that are computably equivalent to WKL0. Only if this is the case

can we conclude that Shore’s computational reverse mathematics respects the

justificatory structure of Simpson’s finitistic reductionism.

One system that is computably equivalent to WKL0 is the system WKL. As

mentioned earlier, this system augments WKL0 with the full induction scheme

(1.13). If computable entailment is to preserve justification for the finitist, then

WKL must also be finitistically reducible. But the presence of the full induction

scheme means that, as we shall see below, WKL proves the consistency of

PRA. Therefore, it is not finitistically reducible to PRA, since the canonical

consistency statement Con PRA is a Π0
1 statement that PRA does not (if it

is, in fact, consistent) prove. In other words, it rules out the possibility of a

finitistic reduction of the sort delivered by Sieg for WKL0, and thus rules out

the possibility that WKL is a finitistically reducible system.

Recall that IΣn is the fragment of Peano arithmetic obtained by restricting

the induction scheme to Σ0
n formulae. The following is a standard result in

the literature on first-order arithmetic. A full proof can be found in Hájek and

Pudlák [1993, §I.4].

Fact 5.2.1. IΣn+1 proves the consistency of IΣn.

Corollary 5.2.2.

1. IΣ1, PRA, RCA0 and WKL0 are equiconsistent.

2. WKL proves the consistency of the systems given in (1).

3. WKL is not Π0
1 conservative over the systems given in (1).

Proof. IΣ1 is Π0
2 conservative over PRA [Parsons 1970]; the first order part

of RCA0 is IΣ1 (that is, they prove the same sentences in the language L1 of

first order arithmetic); and WKL0 is Π1
1 conservative over RCA0 (this is a result

of Leo Harrington; a proof appears in Simpson [2009, §IX.2]). Consequently

any Π0
2 statement provable in WKL0 (or RCA0 or IΣ1) is also provable in PRA.

Since the canonical consistency statements for PRA, IΣ1 and WKL0 are Π0
1, any
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system proving the consistency of one of these systems proves the consistency

of all the others.

By fact 5.2.1, IΣ2 proves the consistency of IΣ1 and hence the consistency

of all the systems listed in (1). WKL extends IΣ2 and thus proves all the

theorems it does. Finally, by the complexity of consistency statements, WKL

cannot be Π0
1 conservative over any of the systems listed in (1).

The methods of infinitary mathematics are justified, on Simpson’s reading

of Hilbert’s view, only to the extent that they are reducible to finitary ones.

This seems to rule out WKL as a partial realisation of Hilbert’s programme

quite straightforwardly. But if computable entailment preserves justification,

then we are justified in accepting WKL if and only if we accept WKL0, as they

are computably equivalent. If this is not the case then computable equivalence

seems to have failed as a way to analyse the mathematical resources required to

derive theorems of ordinary mathematics, since it leads to underdetermination:

we are no longer certain, given some theorem ϕ, whether it is acceptable to the

finitistic reductionist if we know only that it is computably entailed by WKL0.

To resolve this underdetermination we must show that ϕ follows from WKL0

using only resources acceptable to the finitistic reductionist—but since these

resources are simply the axioms of a finitistically reducible system and the laws

of classical logic, this amounts to simply proving the result in WKL0, and we

are no longer working in Shore’s framework, where all that is necessary to show

that one principle follows from another is to demonstrate that it is true in every

ω-model of the first.

This being the case, we have at least one situation in which computational

reverse mathematics is not sufficient to carry out a task in reverse mathe-

matics of significant philosophical interest and importance. The computable

entailment relation does not always preserve the justificatory structure of foun-

dational theories, and hence Shore’s framework thus cannot be used to conduct

the kind of foundational analysis articulated in the previous chapter.

5.3 The complexity of computable entailment

We now turn to a different but related issue with the computable entailment

relation: its recursion-theoretic complexity. As we know from Church and Tur-

ing’s negative answer to the Entscheidungsproblem, the classical provability

relation is uncomputable. Indeed, the set of provable consequences of a theory

like Peano arithmetic is a quintessential example of a recursively enumerable set

that is not recursive. Consequently, while there is no general method for deter-
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mining whether or not a sentence ϕ in the language of arithmetic is provable in

RCA0, there is a Turing machine which enumerates the provable consequences

of RCA0, amongst which are the equivalences of classical reverse mathematics.

Semantic relations such as truth tend to be far more complex than syntactic

relations such as provability, since they are—usually ineliminably—infinitary

in nature. I say “usually” since the completeness theorem for classical first

order logic gives us an important counterexample. As

(5.2) T |= ϕ ⇔ T ` ϕ

for theories T and sentences ϕ, we can enumerate the model-theoretic con-

sequences of a theory by enumerating its provable consequences, reducing a

complex semantic relation to a finitary one. The same does not hold for com-

putable entailment. Not only is it not recursive, but it is not even arithmetical.

As a prelude to demonstrating this, we give a slightly revised definition of

computable entailment, generalised to accommodate parameters.

Definition 5.3.1. For any set X ⊆ N, and sentence ϕ in the language L2 ex-

panded with a constant symbol for X, we say that ϕ is X-computably entailed,

in symbols |=X
c ϕ, iff for all Turing ideals M such that X ∈M , M |= ϕ.

At first glance this may appear less general than the earlier definition, but

by the definition of the satisfaction relation, (ϕ |=X
c ψ) iff |=X

c (ϕ → ψ), and

the new definition is simpler to work with in the current context. Fixing a

recursive, bijective Gödel coding of sentences of second order arithmetic, we

represent the computable entailment relation by the set of Gödel codes for

sentences which are computably entailed. For any X ⊆ N, let

(5.3) C(X) =
{
pϕq

∣∣ |=X
c ϕ

}
where ϕ is an L2-sentence which may contain a constant X denoting X. The

parameter-free version of C(X) we denote simply C. Observing that the def-

inition of computable entailment quantifies over ω-models, we can see that C

contains all the sentences of True Arithmetic, the first order theory of the nat-

ural numbers. True Arithmetic is not arithmetically definable, as this would

contradict Tarski’s theorem. So computable entailment cannot be arithmetical

either.

A stronger lower bound for the complexity of computable entailment can

be found by noting that arithmetical properties of reals are absolute to all ω-

models, and thus that all Π1
1 sets of natural numbers are 1-reducible to C. We

can thus precisely characterise its complexity as Π1
1-complete, by showing that

C can be captured by a Π1
1 definition. This theorem is essentially a classical
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one due to Grzegorczyk, Mostowski, and Ryll-Nardzewski [1958, §3.4, pp. 386–

7]. Their result was proved for the second order functional calculus with the

ω-rule, which they refer to as Aω. We can understand this in the terminology

of the present work as the following result: the set of Gödel numbers of L2-

sentences true in every ω-model of second order arithmetic Z2 is a Π1
1-complete

set. The proof presented below is due to Carl Mummert [Mummert 2012],

who strengthens the classical theorem by proving it for ω-models of RCA0

rather than full Z2. By introducing the notion of X-computable entailment I

further generalise the result to include set parameters, although Mummert’s

proof needs only cosmetic alterations to accommodate this generalisation.

Theorem 5.3.2. For any set parameter X ⊆ ω, the computable entailment

relation C(X) is Π1
1(X)-complete.

We shall need the following standard definitions from recursion theory. For

more background the reader should consult a reference work such as Rogers

[1967], Soare [1987], or the elegant and accessible presentation of Ash and

Knight [2000].

Definition 5.3.3. For sets X,Y ⊆ ω, X is many-one reducible to Y , X ≤m Y ,

just in case there is a total recursive function f such that for all m ∈ ω,

(5.4) m ∈ X ⇔ f(m) ∈ Y.

If f is injective then X is 1-reducible to Y , X ≤1 Y , and if f is a bijection then

X and Y are 1-equivalent.

Definition 5.3.4. Let X ⊆ P (ω). A set X ⊆ ω is complete for X iff X ∈ X
and Y ≤1 X for every Y ∈ X .

Lemma 5.3.5. For any set parameter X ⊆ ω, every Π1
1(X) set A is 1-reducible

to C(X).

Proof. Let ϕ(m1, X1) be a Π1
1 formula. We refer to (ω,P (ω)) as the full model.

Claim: For any n ∈ ω and X ⊆ ω, ϕ(n,X) is true in the full model iff it’s

true in all Turing ideals containing X.

(⇐) The full model is a Turing ideal containing X, so if ϕ(n,X) is false in

the full model then it’s false in that ideal.

(⇒) Assume without loss of generality that ϕ(n,X) ≡ ∀Y ψ(n,X, Y ) where

ψ is arithmetical. Suppose there is a Turing ideal C containing X such that

C 6|= ϕ(X). Then there is some counterexample B ∈ C such that C 6|= ψ(X,B).

Since the interpretation of the first order quantifiers and nonlogical symbols
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are the same in all ω-models, such a B will remain a counterexample in the full

model.

This completes the proof of the claim.

Given ϕ(m1, X1) as above, let A = { n ∈ ω | ϕ(n,X) }. Define the function

fA : ω → ω as fA(n) = pϕ(n,X)q. This function is recursive and injective,

since if a 6= b then pϕ(a,X)q 6= pϕ(b,X)q by the properties of the Gödel

coding. Finally by the claim above and the fact that ϕ(m1, X1) is Π1
1, n ∈

A↔ ϕ(n,X)↔ pϕ(n,X)q = fA(n) ∈ C(X).

Having shown that C is Π1
1-hard, i.e. that all sets A ∈ Π1

1 are 1-reducible

to it, we shall show that C is itself Π1
1 and thus is Π1

1-complete. In doing so

we shall lean on the following definition which shows how a set can code a

countable Turing ideal. A countable coded ω-model is a set W which codes

countable sequence of sets 〈(W )n | n ∈ N〉 where (W )n = { i | (i, n) ∈W }.
For a full definition of countable coded ω-models see Simpson [2009, §VII.2].

Definition 5.3.6. Suppose W ⊆ N is a set coding the countable model M and

X ⊆ N. W codes a countable Turing ideal containing X iff

(i) For every m,n, there exists a k such that (W )k = (W )m ⊕ (W )n;

(ii) For every m, if Y ≤T (W )m then there exists a k such that (W )k = Y ;

(iii) There exists some k such that (W )k = X.

Lemma 5.3.7. Let X,W ⊆ N. The predicate “W codes a countable Turing

ideal containing X” is arithmetical.

Proof. Throughout we use the countable coded ω-model W as a parameter.

The following formula is an analogue of condition (i) of definition 5.3.6.

(5.5)
∀m∀n∃k∀x∀y[x ∈ (W )m ∧ y ∈ (W )n

↔ 2x ∈ (W )k ∧ 2y + 1 ∈ (W )k ].

For (ii), let π(e, n, Y ) be a universal lightface Π0
1 formula with the given free

variables. The existence of such formulae is provable in RCA0; a definition is

provided in Simpson [2009, definition VII.1.3, p. 244]. They play the role of

universal Turing machines.

(5.6)
∀m∀e0∀e1[∀n(π(e0, n, (W )m)↔ ¬π(e1, n, (W )m))

→ ∃k∀n(n ∈ (W )k ↔ π(e0, n, (W )m)) ].

Finally we add condition (iii) that X is an element of the Turing ideal coded

by W ,

(5.7) ∃k∀n(n ∈ X ↔ n ∈ (W )k).
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One can (tediously) verify that these conditions hold of W if and only if the

ω-model coded by W is a Turing ideal containing X.

Lemma 5.3.8. For any set parameter X ⊆ N, if an L2(X)-sentence ϕ is false

in any Turing ideal containing X, then it is false in a countable Turing ideal

containing X.

Proof. Let M be a Turing ideal containing X, and assume that M |= ¬ϕ. By

the downwards Löwenheim–Skolem theorem, M has a countable ω-submodel

M ′ ⊆ω M such that X ∈M ′. M ′ is a Turing ideal, as this property is definable

by an L2(X) sentence which is true in M , and thus in M ′ by elementarity.

Finally, ϕ is false in M ′, again by elementarity.

Proof of theorem 5.3.2. Fix a set parameter X. By lemma 5.3.5, C(X) 1-

reduces every Π1
1(X) set. It only remains to show that C(X) is itself a Π1

1(X)

set.

Let C†(X) be the set of Gödel codes of L2-sentences ϕ such that every

countable Turing ideal containing X satisfies ϕ. Lemma 5.3.8 shows that any

sentence ϕ of second order arithmetic is satisfied by every Turing ideal con-

taining X iff it’s satisfied by every countable Turing ideal containing X. So

pϕq ∈ C(X)⇔ pϕq ∈ C†(X). Thus by proving that C†(X) is a Π1
1(X) set, we

show that C(X) is also Π1
1(X).

The relation pϕq ∈ C†(X) can be defined in second order arithmetic as:

(5.8) (∀ countable Turing ideals M)(X ∈M →M |= ϕ)

To see that this is equivalent to a Π1
1 formula, we note the following. Firstly, by

lemma 5.3.7, the predicate “W codes a countable Turing ideal M” is arithmeti-

cal. Secondly, M |= ϕ means “There exists a valuation function f : SubM (ϕ)→
{ 0, 1 } such that f(pϕq) = 1.” Although this is Σ1

1, every such f is provably

unique, and thus M |= ϕ is equivalent to a Π1
1 formula. �

Computable entailment thus transcends arithmetical truth, being recur-

sively isomorphic to the Π1
1 theory of the natural numbers, and also to mem-

bership in Kleene’s O, the set of notations for recursive ordinals. Nevertheless

its complexity is towards the lower end of the logics considered by Väänänen

[2001] and Koellner [2010], being for instance far less complex than the full

second-order consequence relation. But as we shall soon see, such complexity

is incompatible with the requirements of foundational analysis.

The Entscheidungsproblem was considered by Hilbert and others to be of

such importance because a positive solution would have meant we could obtain,
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by finite means, knowledge of the provability or unprovability of all mathemat-

ical statements. The computational intractability of the classical provability

relation constitutes an epistemic difficulty for mathematics. From this perspec-

tive, we should be troubled by an entailment relation such as Shore’s with a

far greater degree of uncomputability.

It’s well known that truth definitions are not simple: Kripke’s fixed-point

construction of a truth predicate over the natural numbers is also Π1
1-complete

[Kripke 1975]. Provability, at least for classical first-order logic, is compara-

tively uncomplicated. If RCA0 ` ϕ then we can produce a finitary proof witness

by an exhaustive search. We have no such assurance when |=c ϕ: computable

entailment does not satisfy Gödel’s completeness theorem, so we are unable

to reduce this complex semantic relation to the more finitistically acceptable

provability relation.

ω-logic does have a completeness theorem of sorts, namely the ω-complete-

ness theorem of Henkin and Orey, which was stated towards the end of §5.1. By

this theorem, restricting to ω-models is equivalent to closing one’s consequence

set under the ω-rule. This is typically formalised in terms of an infinitary proof

calculus, where proofs are well-founded trees which branch infinitely on uses of

the ω-rule. However, this completeness theorem does not induce a reduction in

the complexity of the computable entailment relation: computable entailment

is irredeemably infinitary.

Computable entailment is also, as should now be very clear, an impredica-

tive relation. Shore’s definition quantifies over all Turing ideals, and while the-

orem 5.3.2 shows that a definition quantifying only over countable Turing ideals

is in fact equivalent to Shore’s, computable entailment is still Π1
1-complete, and

thus an archetypal impredicative relation. As such the predicativist and the

predicative reductionist (in the sense of §4.4) should not accept this relation as

being well-defined, and should treat inferences that employ it with suspicion.

This brings us back to the theme of §5.2, namely the role of a reverse

mathematical entailment relation within the foundational dialectic. If reverse

mathematics is going to be a useful tool for foundational analysis of a given

foundational theory—call it F—then the entailment relation it employs had

better be acceptable to F-theorists, or they can simply reject any argument

based on the foundational analysis thereby achieved as presupposing theoretical

commitments which they reject.

So far we have discussed theoretical commitments in terms of the internal

justificatory structure of foundational programmes, with a focus on the types

of inferences allowed by the strictures of those programmes. In particular I
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have argued that a finitistic reductionist would not accept all the consequences

which are computably entailed by a finitistically acceptable theory. But there

are other dimensions of theoretical commitment, one of which concerns the

proof-theoretic strength of the theory which an F-theorist will accept and the

commitments inherent in the use of computable entailment.

Consider the following principle which constitutes a nontriviality condition

on computable entailment: Every set is contained in a countable Turing ideal.

It is clear that if we want to use computational reverse mathematics then we

should accept this principle, since we believe that while some statements in the

language of second order arithmetic are computably entailed, not all are. This

principle is not provable in RCA0, but it is provable in ACA0.25

Lemma 5.3.9. The following is provable in ACA0. Every set X ⊆ N is con-

tained in a countable coded Turing ideal.

Proof. Fix a universal lightface Π0
1 formula π(e,m,X) in the displayed free

variables. Let X ⊆ N, and let W be the set of triples (m, (e0, e1)) such that

π(e1,m,X) and ∀n(¬π(e0, n,X) ↔ π(e1, n,X)). W exists by arithmetical

comprehension, and it is straightforward to check that it codes a countable

Turing ideal M with X ∈M .

Given their acceptance of ACA0, the predicativist will by lemma 5.3.9 ac-

cept the nontriviality of computable entailment. On the other hand, asserting

the existence of a Π1
1-complete relation such as computable entailment would

exceed the existential boundaries which a predicativist should be comfortable

with. Such a set can only be defined by a formula which universally quanti-

fies over sets of natural numbers. It is thus thoroughly impredicative, as the

predicativist can determine from within their own framework by showing that

the existence of the truth set for X-computable entailment (for any X ⊆ N) is

equivalent to Π1
1 comprehension.

Lemma 5.3.10. The following is provable in ACA0. Suppose M is a countable

coded ω-model with satisfaction function fM , and ϕ is an arithmetical formula

with parameters from M . Then the following absoluteness fact holds:

ϕ↔ f(pϕq) = 1

Proof. By induction on the complexity of ϕ.

25It is actually provable in WKL0, by a different proof technique to the one used here. My

thanks to Carl Mummert for pointing this out to me.
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The following theorem is then provable in the system known as ACA+
0 , which

while still predicatively justifiable, extends ACA0 with an axiom stating that

the Turing jump can be iterated ω-many times.

Theorem 5.3.11. The following are equivalent over ACA+
0 .

1. Π1
1 comprehension.

2. For every X ⊆ N, the truth set C(X) of the X-computable entailment

relation exists.

Proof. As we saw in the proof of theorem 5.3.2, the truth set C(X) for X-

computable entailment has a Π1
1 definition,

C(X) = { pϕq | (∀ countable Turing ideals M)(X ∈M →M |= ϕ) } .

Let X ⊆ N be any set. Π1
1-CA0 proves C(X) exists since it has a Π1

1

definition in the parameter X. This completes the forward direction of the

proof.

To prove the reversal we work in ACA+
0 . The following facts will be required.

(i) For any countable coded Turing ideal M and sentence ϕ of L2, ACA+
0

proves the existence and uniqueness of the valuation function f : SubM (ϕ)

→ { 0, 1 }.

(ii) Arithmetical properties are absolute between any countable coded ω-

model and the ambient model: that is, ACA0 ` (ϕ(X) ↔ M |= ϕ(X))

when ϕ is arithmetical.

Now, assuming that C(X) exists for every X ⊆ N, we prove the following

principle known to be equivalent over RCA0 to Π1
1 comprehension: For any

sequence of trees 〈Tk | k ∈ N〉, Tk ⊆ N<N, there exists a set Y such that ∀k(k ∈
Y ↔ Tk has a path).

Let T ⊆ N<N be a tree. We prove the following claim: T is wellfounded if

and only if every countable coded Turing ideal satisfies “T is wellfounded”.

(⇒) Suppose there is a countable coded Turing ideal M1 which contains T

and M1 6|= WF(T ). M1 thus contains a function f : N → N which is a path

through T . T and f exist by recursive comprehension in the parameter M1, so

f witnesses the illfoundedness of T .

(⇐) Suppose T is not wellfounded, so there is a path f through T . By

lemma 5.3.9 there exists a countable coded Turing ideal M2 that contains T⊕f .

Since M2 contains f , and “f is a path through T” is arithmetical (and thus

absolute), M2 6|= WF(T ).
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This completes the proof of the claim.

Let Z = 〈Tk | k ∈ N〉 be a sequences of trees. By our initial assumption,

C(Z) exists, and thus the set Y = { k | pWF(Tk)q 6∈ C(Z) } exists by recursive

comprehension in the parameter C(Z). By the claim it follows that for all k,

k ∈ Y ↔ Tk has a path.

Π1
1-CA0 is the strongest of the subsystems of second order arithmetic usually

studied in reverse mathematics. Computational reverse mathematics therefore

draws on resources which are unavailable in the four members of the Big Five

that are proof-theoretically weaker than Π1
1-CA0.

Since theorem 5.3.11 is provable within a predicatively acceptable system,

the predicativist is clearly in a position to calibrate the strength of the com-

mitment involved in accepting computable entailment. Doing so, she will see

that not only is it stronger than predicative systems like ACA0, but also pred-

icatively reducible ones like ATR0. So not only does the existence of the truth

set for the computable entailment relation exceed the strength of the predica-

tivist and the predicative reductionist’s theoretical resources, but they are in

a position to see that it does. Since they reject impredicative mathematics,

and thus reject Π1
1 comprehension, they must therefore reject the equivalent

statement that the truth set for computable entailment exists.

For foundational analysis to be a useful and worthwhile endeavour within

the philosophy of mathematics, the fruits of its analysis must be epistemically

available to disputants. Recall our example of Sarah the predicativist, whom

we met in chapter 4. Since she accepts ACA0, she believes that the equiva-

lence between Π1
1 comprehension and the statement “Every countable abelian

group can be expressed as a direct sum of a divisible group and a reduced

group” (hereafter referred to as P ) is true, since it is provable in a system con-

tained in ACA0 (namely RCA0). How she responds to Rebecca’s challenge that

Sarah’s predicativism is misguided, since it does not allow her to prove this

ordinary mathematical theorem, will depend on the details of her views about

the foundations of mathematics, but crucially she cannot dismiss the equiva-

lence as question-begging. On the other hand, suppose Rebecca were instead

to present Sarah with the following argument: Π1
1-CA0 and P are computably

equivalent, that is to say they are true in exactly the same Turing ideals. Sarah

should therefore accept Π1
1-CA0, since P is an ordinary mathematical theorem

that any decent foundational system should prove. In this case Sarah can resist

the conclusion by refusing to accept the antecedent: computable equivalence is

not a well-defined notion, since it presupposes theoretical resources which pred-

icativism denies. Any argument presupposing that computable equivalence is
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5.3. The complexity of computable entailment

a well-defined notion therefore begs the question against her position.

A philosophical argument that attempts to invoke reverse mathematical re-

sults in the context of foundational analysis should, if it is to have any force, ap-

peal only to principles that the target of the argument already accepts. In other

words, its presuppositions must not exceed their theoretical commitments. But

the argument above shows that the theoretical commitments which accompany

the use of computable entailment outstrip those acceptable to partisans of most

of the foundational programmes analysable in reverse mathematics. Whatever

its other virtues, computational reverse mathematics is an inappropriate setting

in which to conduct foundational analysis.
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